본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Hands-On High Performance with Go 상세페이지

Hands-On High Performance with Go

Boost and optimize the performance of your Golang applications at scale with resilience

  • 관심 0
소장
전자책 정가
22,000원
판매가
22,000원
출간 정보
  • 2020.03.24 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 387 쪽
  • 14.6MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781789801774
ECN
-
Hands-On High Performance with Go

작품 정보

▶Book Description
Go is an easy-to-write language that is popular among developers thanks to its features such as concurrency, portability, and ability to reduce complexity. This Golang book will teach you how to construct idiomatic Go code that is reusable and highly performant.

Starting with an introduction to performance concepts, you'll understand the ideology behind Go's performance. You'll then learn how to effectively implement Go data structures and algorithms along with exploring data manipulation and organization to write programs for scalable software. This book covers channels and goroutines for parallelism and concurrency to write high-performance code for distributed systems. As you advance, you'll learn how to manage memory effectively. You'll explore the compute unified device architecture (CUDA) application programming interface (API), use containers to build Go code, and work with the Go build cache for quicker compilation. You'll also get to grips with profiling and tracing Go code for detecting bottlenecks in your system. Finally, you'll evaluate clusters and job queues for performance optimization and monitor the application for performance regression.

By the end of this Go programming book, you'll be able to improve existing code and fulfill customer requirements by writing efficient programs.

▶What You Will Learn
- Organize and manipulate data effectively with clusters and job queues
- Explore commonly applied Go data structures and algorithms
- Write anonymous functions in Go to build reusable apps
- Profile and trace Go apps to reduce bottlenecks and improve efficiency
- Deploy, monitor, and iterate Go programs with a focus on performance
- Dive into memory management and CPU and GPU parallelism in Go

▶Key Features
- Explore Go's profiling tools to write faster programs by identifying and fixing bottlenecks
- Address Go-specific performance issues such as memory allocation and garbage collection
- Delve into the subtleties of concurrency and discover how to successfully implement it in everyday applications

▶Who This Book Is For
This Golang book is a must for developers and professionals who have an intermediate-to-advanced understanding of Go programming, and are interested in improving their speed of code execution.

▶What this book covers
- Chapter 1, Introduction to Performance in Go, will discuss why performance in computer science is important. You will also learn why performance is important in the Go language.

- Chapter 2, Data Structures and Algorithms, deals with data structures and algorithms, which are the basic units of building software, notably complex performance software. Understanding them will help you to think about how to most impact fully organize and manipulate data in order to write effective, performant software. Also, iterators and generators are essential to Go. This chapter will include explanations of different data structures and algorithms, as well as how their big O notation is impacted.

- Chapter 3, Understanding Concurrency, will talk about utilizing channels and goroutines for parallelism and concurrency, which are idiomatic in Go and are the best ways to write high-performance code in your system. Being able to understand when and where to use each of these design patterns is essential to writing performant Go.

- Chapter 4, STL Algorithm Equivalents in Go, discusses how many programmers coming from other high-performance languages, namely C++, understand the concept of the standard template library, which provides common programming data structures and functions in a generalized library in order to rapidly iterate and write performant code at scale.

- Chapter 5, Matrix and Vector Computation in Go, deals with matrix and vector computations in general. Matrices are important in graphics manipulation and AI, namely image recognition. Vectors can hold a myriad of objects in dynamic arrays. They use contiguous storage and can be manipulated to accommodate growth.

- Chapter 6, Composing Readable Go Code, focuses on the importance of writing readable Go code. Understanding the patterns and idioms discussed in this chapter will help you to write Go code that is more easily readable and operable between teams. Also, being able to write idiomatic Go will help raise the level of your code quality and help your project maintain velocity.

- Chapter 7, Template Programming in Go, focuses on template programming in Go. Metaprogramming allows the end user to write Go programs that produce, manipulate, and run Go programs. Go has clear, static dependencies, which helps with metaprogramming. It has shortcomings that other languages don't have in metaprogramming, such as __getattr__ in Python, but we can still generate Go code and compile the resulting code if it's deemed prudent.

- Chapter 8, Memory Management in Go, discusses how memory management is paramount to system performance. Being able to utilize a computer's memory footprint to the fullest allows you to keep highly functioning programs in memory so that you don't often have to take the large performance hit of swapping to disk. Being able to manage memory effectively is a core tenet of writing performant Go code.

- Chapter 9, GPU Parallelization in Go, focuses on GPU accelerated programming, which is becoming more and more important in today's high-performance computing stacks. We can use the CUDA driver API for GPU acceleration. This is commonly used in topics such as deep learning algorithms.

- Chapter 10, Compile Time Evaluations in Go, discusses minimizing dependencies and each file declaring its own dependencies while writing a Go program. Regular syntax and module support also help to improve compile times, as well as interface satisfaction. These things help to make Go compilation quicker, alongside using containers for building Go code and utilizing the Go build cache.

- Chapter 11, Building and Deploying Go Code, focuses on how to deploy new Go code. To elaborate further, this chapter explains how we can push this out to one or multiple places in order to test against different environments. Doing this will allow us to push the envelope of the amount of throughput that we have for our system.

- Chapter 12, Profiling Go Code, focuses on profiling Go code, which is one of the best ways to determine where bottlenecks live within your Go functions. Performing this profiling will help you to deduce where you can make improvements within your function and how much time individual pieces take within your function call with respect to the overall system.

- Chapter 13, Tracing Go Code, deals with a fantastic way to check interoperability between functions and services within your Go program, also known as tracing. Tracing allows you to pass context through your system and evaluate where you are being held up. Whether it's a third-party API call, a slow messaging queue, or an O(n2) function, tracing will help you to find where this bottleneck resides.

- Chapter 14, Clusters and Job Queues, focuses on the importance of clustering and job queues in Go as good ways to get distributed systems to work synchronously and deliver a consistent message. Distributed computing is difficult, and it becomes very important to watch for potential performance optimizations within both clustering and job queues.

- Chapter 15, Comparing Code Quality Across Versions, deals with what you should do after you have written, debugged, profiled, and monitored Go code that is monitoring your application in the long term for performance regressions. Adding new features to your code is fruitless if you can't continue to deliver a level of performance that other systems in your infrastructure depend on.

작가 소개

▶About the Author
- Bob Strecansky
Bob Strecansky is a senior site reliability engineer. He graduated with a computer engineering degree from Clemson University with a focus on networking. He has worked in both consulting and industry jobs since graduation. He has worked with large telecom companies and much of the Alexa top 500. He currently works at Mailchimp, working to improve web performance, security, and reliability for one of the world's largest email service providers. He has also written articles for web publications and currently maintains the OpenTelemetry PHP project. In his free time, Bob enjoys tennis, cooking, and restoring old cars. You can follow Bob on the internet to hear musings about performance analysis: Twitter: @bobstrecansky GitHub: @bobstrecansky

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • AI 에이전트 생태계 (이주환)
  • 헤드 퍼스트 소프트웨어 아키텍처 (라주 간디, 마크 리처드)
  • 깃허브 액션으로 구현하는 실전 CI/CD 설계와 운영 (노무라 도모키, 김완섭)
  • 딥러닝 제대로 이해하기 (사이먼 J. D. 프린스, 고연이)
  • 도커로 구축한 랩에서 혼자 실습하며 배우는 네트워크 프로토콜 입문 (미야타 히로시, 이민성)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 네이처 오브 코드 (자바스크립트판) (다니엘 쉬프만, 윤인성)
  • 현장에서 통하는 도메인 주도 설계 실전 가이드 (마스다 토오루, 타나카 히사테루)
  • 개정판 | Do it! 플러터 앱 개발 & 출시하기 (조준수)
  • 코딩 자율학습 나도코딩의 파이썬 입문 (나도코딩)
  • 모던 리액트 Deep Dive (김용찬)
  • 이게 되네? 클로드 MCP 미친 활용법 27제 (박현규)
  • 지속적 배포 (발렌티나 세르빌, 이일웅)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 딥러닝 프로젝트를 위한 허깅페이스 실전 가이드 (윤대희, 김동화)
  • LLM을 활용한 실전 AI 애플리케이션 개발 (허정준, 정진호)
  • 혼자 공부하는 네트워크 (강민철)
  • 개발자를 넘어 기술 리더로 가는 길 (타냐 라일리, 김그레이스)
  • 도메인 주도 설계 (에릭 에반스, 이대엽)
  • 개정판 | 밑바닥부터 시작하는 딥러닝 1 (사이토 고키, 이복연)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전