본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Hands-On Deep Learning with R 상세페이지

Hands-On Deep Learning with R

A practical guide to designing, building, and improving neural network models using R

  • 관심 0
소장
전자책 정가
23,000원
판매가
23,000원
출간 정보
  • 2020.04.24 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 317 쪽
  • 13.6MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781788993784
UCI
-
Hands-On Deep Learning with R

작품 정보

▶Book Description
Deep learning enables efficient and accurate learning from a massive amount of data. This book will help you overcome a number of challenges using various deep learning algorithms and architectures with R programming.

This book starts with a brief overview of machine learning and deep learning and how to build your first neural network. You’ll understand the architecture of various deep learning algorithms and their applicable fields, learn how to build deep learning models, optimize hyperparameters, and evaluate model performance. Various deep learning applications in image processing, natural language processing (NLP), recommendation systems, and predictive analytics will also be covered. Later chapters will show you how to tackle recognition problems such as image recognition and signal detection, programmatically summarize documents, conduct topic modeling, and forecast stock market prices. Toward the end of the book, you will learn the common applications of GANs and how to build a face generation model using them. Finally, you’ll get to grips with using reinforcement learning and deep reinforcement learning to solve various real-world problems.

By the end of this deep learning book, you will be able to build and deploy your own deep learning applications using appropriate frameworks and algorithms.

▶What You Will Learn
- Design a feedforward neural network to see how the activation function computes an output
- Create an image recognition model using convolutional neural networks (CNNs)
- Prepare data, decide hidden layers and neurons and train your model with the backpropagation algorithm
- Apply text cleaning techniques to remove uninformative text using NLP
- Build, train, and evaluate a GAN model for face generation
- Understand the concept and implementation of reinforcement learning in R

▶Key Features
- Understand deep learning algorithms and architectures using R and determine which algorithm is best suited for a specific problem
- Improve models using parameter tuning, feature engineering, and ensembling
- Apply advanced neural network models such as deep autoencoders and generative adversarial networks (GANs) across different domains

▶Who This Book Is For
This book is for data scientists, machine learning engineers, and deep learning developers who are familiar with machine learning and are looking to enhance their knowledge of deep learning using practical examples. Anyone interested in increasing the efficiency of their machine learning applications and exploring various options in R will also find this book useful. Basic knowledge of machine learning techniques and working knowledge of the R programming language is expected.

▶What this book covers
- Chapter 1, Machine Learning Basics, reviews all the essential elements of machine learning. This quick refresher is important as we move into deep learning, a subset of machine learning, which shares a number of common terms and methods.

- Chapter 2, Setting Up R for Deep Learning, summarizes the common frameworks and algorithms for deep learning and reinforced deep learning in R. You will become familiar with the common libraries, including MXNet, H2O, and Keras, and learn how to install each library in R.

- Chapter 3, Artificial Neural Networks, teaches you about artificial neural networks, which make up the base building block for all deep learning. You will build a simple artificial neural network and learn how all of its components combine to solve complex problems.

- Chapter 4, CNNs for Image Recognition, demonstrates how to use convolutional neural networks for image recognition. We will briefly cover why these deep learning networks are superior to shallow nets. The remainder of the chapter will cover the components of a convolutional neural network with considerations for making the most appropriate choice.

- Chapter 5, Multilayer Perceptron Neural Networks for Signal Detection, shows how to build a multilayer perceptron neural network for signal detection. You will learn the architecture of multilayer perceptron neural networks, and also learn how to prepare data, define hidden layers and neurons, and train a model using a backpropagation algorithm in R.

- Chapter 6, Neural Collaborative Filtering Using Embeddings, explains how to build a neural collaborative filtering recommender system using layered embeddings. You will learn how to use the custom Keras API, construct an architecture with user-item embedding layers, and train a practical recommender system using implicit ratings.

- Chapter 7, Deep Learning for Natural Language Processing, explains how to create document summaries. The chapter begins with removing parts of documents that should not be considered and tokenizing the remaining text. Afterward, embeddings are applied and clusters are created. These clusters are then used to make document summaries. We will also learn to code a Restricted Boltzmann Machine (RBM) along with defining Gibbs Sampling, Contrastive Divergence, and Free Energy for the algorithm. The chapter will conclude with compiling multiple RBMs to create a deep belief network.

- Chapter 8, Long Short-Term Memory Networks for Stock Forecasting, shows how to use long short-term memory (LSTM) RNN networks for predictive analytics. You will learn how to prepare sequence data for LSTM and how to build a predictive model with LSTM.

- Chapter 9, Generative Adversarial Networks for Faces, describes the main components and applications of generative adversarial networks (GANs). You will learn the common applications of generative adversarial networks and how to build a face generation model with GANs.

- Chapter 10, Reinforcement Learning for Gaming, demonstrates the reinforcement learning method on a tic-tac-toe game. You will learn the concept and implementation of reinforcement learning in a highly customizable framework. Moreover, you will also learn how to create an agent that plays the best action for each game step and how to implement reinforcement learning in R.

- Chapter 11, Deep Q-Learning for Maze Solving, shows us how to use R to implement reinforcement learning techniques within a maze environment. In particular, we will create an agent to solve a maze by training an agent to perform actions and to learn from failed attempts.

작가 소개

▶About the Author
- Michael Pawlus
Michael Pawlus is a data scientist at The Ohio State University where he is currently part of the team building of the data science infrastructure for the Advancement department while also leading the implementation of innovative projects there. Prior to this, Michael was a data scientist at the University of Southern California. In addition to this work, Michael has chaired data science education conferences, published articles on the role of data science within fundraising and currently serves on committees where he is focused on providing a wider variety of educational offerings as well as increasing the diversity of content creators in this space. Michael holds degrees from Grand Valley State University and the University of Sheffield.

- Rodger Devine
Rodger Devine is the Associate Dean of External Affairs for Strategy and Innovation at the USC Dornsife College of Letters, Arts, and Sciences. Rodger's portfolio includes advancement operations, BI, leadership annual giving, program innovation, prospect development, and strategic information management. Prior to USC, Rodger served as the Director of Information, Analytics, and Annual Giving at the Michigan Ross School of Business. Rodger brings nearly 20 years of experience in software engineering, IT operations, BI, project management, organizational development, and leadership. Rodger completed his Masters in data science at the University of Michigan and is a doctoral student in the OCL program at the USC Rossier School of Education.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 바이브 코딩 너머 개발자 생존법 (애디 오스마니, 강민혁)
  • 혼자 공부하는 바이브 코딩 with 클로드 코드 (조태호)
  • 요즘 당근 AI 개발 (당근 팀)
  • AI 자율학습 밑바닥부터 배우는 AI 에이전트 (다비드스튜디오)
  • 알아서 잘하는 에이전틱 AI 시스템 구축하기 (안자나바 비스와스, 릭 탈루크다르)
  • 도메인 주도 설계를 위한 함수형 프로그래밍 (스콧 블라신, 박주형)
  • 개정2판 | 소프트웨어 아키텍처 The Basics (마크 리처즈, 닐 포드)
  • AI 엔지니어링 (칩 후옌, 변성윤)
  • 연필과 종이로 풀어보는 딥러닝 수학 워크북 214제 (톰 예(Tom yeh) )
  • 밑바닥부터 만들면서 배우는 LLM (세바스찬 라시카, 박해선)
  • 러스트 클린 코드 (브렌든 매슈스, 윤인도)
  • 요즘 바이브 코딩 클로드 코드 완벽 가이드 (최지호(코드팩토리))
  • 처음부터 시작하는 Next.js / React 개발 입문 (미요시 아키, 김모세)
  • AI 자율학습 커서 × AI로 완성하는 나만의 웹 서비스 (성구(강성규) )
  • 개정판 | <소문난 명강의> 레트로의 유니티 6 게임 프로그래밍 에센스 (이제민)
  • 만화로 배우는 리눅스 시스템 관리 1권(PDF 버전) (Piro, 서수환)
  • 요즘 개발자를 위한 시스템 설계 수업 (디렌드라 신하 , 테자스 초프라)
  • 언리얼 엔진으로 배우는 게임 디자인 패턴 (스튜어트 버틀러, 톰 올리버)
  • 데이터베이스 설계, 이렇게 하면 된다 (미크, 윤인성)
  • 핸즈온 바이브 코딩 (정도현)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전