본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Hands-On Deep Learning with R 상세페이지

Hands-On Deep Learning with R

A practical guide to designing, building, and improving neural network models using R

  • 관심 0
소장
전자책 정가
23,000원
판매가
23,000원
출간 정보
  • 2020.04.24 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 317 쪽
  • 13.6MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781788993784
ECN
-
Hands-On Deep Learning with R

작품 정보

▶Book Description
Deep learning enables efficient and accurate learning from a massive amount of data. This book will help you overcome a number of challenges using various deep learning algorithms and architectures with R programming.

This book starts with a brief overview of machine learning and deep learning and how to build your first neural network. You’ll understand the architecture of various deep learning algorithms and their applicable fields, learn how to build deep learning models, optimize hyperparameters, and evaluate model performance. Various deep learning applications in image processing, natural language processing (NLP), recommendation systems, and predictive analytics will also be covered. Later chapters will show you how to tackle recognition problems such as image recognition and signal detection, programmatically summarize documents, conduct topic modeling, and forecast stock market prices. Toward the end of the book, you will learn the common applications of GANs and how to build a face generation model using them. Finally, you’ll get to grips with using reinforcement learning and deep reinforcement learning to solve various real-world problems.

By the end of this deep learning book, you will be able to build and deploy your own deep learning applications using appropriate frameworks and algorithms.

▶What You Will Learn
- Design a feedforward neural network to see how the activation function computes an output
- Create an image recognition model using convolutional neural networks (CNNs)
- Prepare data, decide hidden layers and neurons and train your model with the backpropagation algorithm
- Apply text cleaning techniques to remove uninformative text using NLP
- Build, train, and evaluate a GAN model for face generation
- Understand the concept and implementation of reinforcement learning in R

▶Key Features
- Understand deep learning algorithms and architectures using R and determine which algorithm is best suited for a specific problem
- Improve models using parameter tuning, feature engineering, and ensembling
- Apply advanced neural network models such as deep autoencoders and generative adversarial networks (GANs) across different domains

▶Who This Book Is For
This book is for data scientists, machine learning engineers, and deep learning developers who are familiar with machine learning and are looking to enhance their knowledge of deep learning using practical examples. Anyone interested in increasing the efficiency of their machine learning applications and exploring various options in R will also find this book useful. Basic knowledge of machine learning techniques and working knowledge of the R programming language is expected.

▶What this book covers
- Chapter 1, Machine Learning Basics, reviews all the essential elements of machine learning. This quick refresher is important as we move into deep learning, a subset of machine learning, which shares a number of common terms and methods.

- Chapter 2, Setting Up R for Deep Learning, summarizes the common frameworks and algorithms for deep learning and reinforced deep learning in R. You will become familiar with the common libraries, including MXNet, H2O, and Keras, and learn how to install each library in R.

- Chapter 3, Artificial Neural Networks, teaches you about artificial neural networks, which make up the base building block for all deep learning. You will build a simple artificial neural network and learn how all of its components combine to solve complex problems.

- Chapter 4, CNNs for Image Recognition, demonstrates how to use convolutional neural networks for image recognition. We will briefly cover why these deep learning networks are superior to shallow nets. The remainder of the chapter will cover the components of a convolutional neural network with considerations for making the most appropriate choice.

- Chapter 5, Multilayer Perceptron Neural Networks for Signal Detection, shows how to build a multilayer perceptron neural network for signal detection. You will learn the architecture of multilayer perceptron neural networks, and also learn how to prepare data, define hidden layers and neurons, and train a model using a backpropagation algorithm in R.

- Chapter 6, Neural Collaborative Filtering Using Embeddings, explains how to build a neural collaborative filtering recommender system using layered embeddings. You will learn how to use the custom Keras API, construct an architecture with user-item embedding layers, and train a practical recommender system using implicit ratings.

- Chapter 7, Deep Learning for Natural Language Processing, explains how to create document summaries. The chapter begins with removing parts of documents that should not be considered and tokenizing the remaining text. Afterward, embeddings are applied and clusters are created. These clusters are then used to make document summaries. We will also learn to code a Restricted Boltzmann Machine (RBM) along with defining Gibbs Sampling, Contrastive Divergence, and Free Energy for the algorithm. The chapter will conclude with compiling multiple RBMs to create a deep belief network.

- Chapter 8, Long Short-Term Memory Networks for Stock Forecasting, shows how to use long short-term memory (LSTM) RNN networks for predictive analytics. You will learn how to prepare sequence data for LSTM and how to build a predictive model with LSTM.

- Chapter 9, Generative Adversarial Networks for Faces, describes the main components and applications of generative adversarial networks (GANs). You will learn the common applications of generative adversarial networks and how to build a face generation model with GANs.

- Chapter 10, Reinforcement Learning for Gaming, demonstrates the reinforcement learning method on a tic-tac-toe game. You will learn the concept and implementation of reinforcement learning in a highly customizable framework. Moreover, you will also learn how to create an agent that plays the best action for each game step and how to implement reinforcement learning in R.

- Chapter 11, Deep Q-Learning for Maze Solving, shows us how to use R to implement reinforcement learning techniques within a maze environment. In particular, we will create an agent to solve a maze by training an agent to perform actions and to learn from failed attempts.

작가 소개

▶About the Author
- Michael Pawlus
Michael Pawlus is a data scientist at The Ohio State University where he is currently part of the team building of the data science infrastructure for the Advancement department while also leading the implementation of innovative projects there. Prior to this, Michael was a data scientist at the University of Southern California. In addition to this work, Michael has chaired data science education conferences, published articles on the role of data science within fundraising and currently serves on committees where he is focused on providing a wider variety of educational offerings as well as increasing the diversity of content creators in this space. Michael holds degrees from Grand Valley State University and the University of Sheffield.

- Rodger Devine
Rodger Devine is the Associate Dean of External Affairs for Strategy and Innovation at the USC Dornsife College of Letters, Arts, and Sciences. Rodger's portfolio includes advancement operations, BI, leadership annual giving, program innovation, prospect development, and strategic information management. Prior to USC, Rodger served as the Director of Information, Analytics, and Annual Giving at the Michigan Ross School of Business. Rodger brings nearly 20 years of experience in software engineering, IT operations, BI, project management, organizational development, and leadership. Rodger completed his Masters in data science at the University of Michigan and is a doctoral student in the OCL program at the USC Rossier School of Education.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 도커로 구축한 랩에서 혼자 실습하며 배우는 네트워크 프로토콜 입문 (미야타 히로시, 이민성)
  • LLM과 RAG로 구현하는 AI 애플리케이션 (에디유, 대니얼김)
  • 나만의 MCP 서버 만들기 with 커서 AI (서지영)
  • 개정판 | 밑바닥부터 시작하는 딥러닝 1 (사이토 고키, 이복연)
  • 생성형 AI 인 액션 (아미트 바리, 이준)
  • 데이터 삽질 끝에 UX가 보였다 (이미진(란란))
  • 지식그래프 (이광배, 이채원)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 테디노트의 랭체인을 활용한 RAG 비법노트 심화편 (이경록)
  • 지속적 배포 (발렌티나 세르빌, 이일웅)
  • LLM 인 프로덕션 (크리스토퍼 브루소, 매슈 샤프)
  • 실전! 스프링 부트 3 & 리액트로 시작하는 모던 웹 애플리케이션 개발 (주하 힌쿨라, 변영인)
  • 혼자 공부하는 네트워크 (강민철)
  • 혼자 공부하는 컴퓨터 구조+운영체제 (강민철)
  • 객체지향의 사실과 오해 (조영호)
  • 그림으로 이해하는 알고리즘 (이시다 모리테루, 미야자키 쇼이치)
  • 코드 밖 커뮤니케이션 (재퀴 리드, 곽지원)
  • LLM을 활용한 실전 AI 애플리케이션 개발 (허정준, 정진호)
  • LLM 엔지니어링 (막심 라본, 폴 이우수틴)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전