본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Mobile Deep Learning with TensorFlow Lite, ML Kit and Flutter 상세페이지

Mobile Deep Learning with TensorFlow Lite, ML Kit and Flutter

Build scalable real-world projects to implement end-to-end neural networks on Android and iOS

  • 관심 0
소장
전자책 정가
18,000원
판매가
18,000원
출간 정보
  • 2020.04.06 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 372 쪽
  • 31.5MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781789613995
ECN
-
Mobile Deep Learning with TensorFlow Lite, ML Kit and Flutter

작품 정보

▶What You Will Learn
- Create your own customized chatbot by extending the functionality of Google Assistant
- Improve learning accuracy with the help of features available on mobile devices
- Perform visual recognition tasks using image processing
- Use augmented reality to generate captions for a camera feed
- Authenticate users and create a mechanism to identify rare and suspicious user interactions
- Develop a chess engine based on deep reinforcement learning
- Explore the concepts and methods involved in rolling out production-ready deep learning iOS and Android applications

▶Key Features
- Work through projects covering mobile vision, style transfer, speech processing, and multimedia processing
- Cover interesting deep learning solutions for mobile
- Build your confidence in training models, performance tuning, memory optimization, and neural network deployment through every project

▶Who This Book Is For
This book is for data scientists, deep learning and computer vision engineers, and natural language processing (NLP) engineers who want to build smart mobile apps using deep learning methods. You will also find this book useful if you want to improve your mobile app's user interface (UI) by harnessing the potential of deep learning. Basic knowledge of neural networks and coding experience in Python will be beneficial to get started with this book.

▶What this book covers
- Chapter 1, Introduction to Deep Learning for Mobile, talks about the emerging importance of deep learning on mobile devices. It covers the basic concepts of machine learning and deep learning, also introducing you to the various options available for integrating deep learning with Android and iOS. The chapter also introduces implementations of deep learning projects using native and cloud-based learning methodologies.

- Chapter 2, Mobile Vision – Face Detection Using On-Device Models, introduces you to mobile vision and mobile vision models available in ML Kit. You will learn how to create a face detection model in Keras and understand how to convert that to be used for mobile devices. The model uses the Google Cloud Vision API for face detection.

- Chapter 3, Chatbot Using Actions on Google, helps you to create your own customized chatbot by extending the functionality of Google Assistant. The project provides a good understanding of how to build a product that uses engaging voice and text-based conversational interfaces using Actions on Google and Dialogflow's API.

- Chapter 4, Recognizing Plant Species, provides an in-depth discussion on how to build a custom Tensorflow Lite model that is able to perform visual recognition tasks using image processing. The model developed runs on mobile devices and is primarily used to recognize different plant species. The model uses a deep Convolutional Neural Network (CNN) for visual recognition.

- Chapter 5, Generating Live Captions from a Camera Feed, presents a method of using a camera feed to generate natural language captions in real time. In this project, you'll create your own camera application that uses a customized pretrained model generated by the image caption generator. The model uses a CNN and Long Short-Term Memory (LSTM) for caption generation.

- Chapter 6, Building an Artificial Intelligence Authentication System, presents you with ways to authenticate users and create a mechanism to identify rare and suspicious user interactions. Upon identification of rare events, that is, those that differ from the majority of data, the user is not allowed to log in, receiving a message saying that a malicious user was detected. This could be of great use when the application in question contains highly secured data, such as confidential emails or virtual banking vaults. The project uses an LSTM-based model on network request headers to perform classification of anomalous logins.

- Chapter 7, Speech/Multimedia Processing – Generating Music Using AI, explores ways to generate music using AI. You will be introduced to multimedia processing. The chapter demonstrates the methods used to generate music after training on samples. The project uses recurrent neural networks and an LSTM-based model to generate MIDI music files.

- Chapter 8, Reinforced Neural Network-Based Chess Engine, discusses Google’s DeepMind and how reinforced neural networks can be used for machine-assisted gameplay on the Android platform. You will first create a Connect4 engine to get an intuition for building a self-learning, game-playing AI. Then, you will develop a chess engine based on deep reinforcement learning and host it on Google Cloud Platform (GCP) as an API. Then, you'll use the API for the chess engine to perform gameplay on mobile devices.

- Chapter 9, Building an Image Super-Resolution Application, presents a method of generating super-resolution images with the help of deep learning. You will learn a third method of handling images on Android/iOS, and how to create TensorFlow models that can be hosted on DigitalOcean and then included in Android/iOS apps. With this model being highly resource-intensive, you will be instructed on how to host the model on the cloud. The project uses generative adversarial networks.

- Chapter 10, Road Ahead, briefly covers the most popular applications for deep learning in mobile apps today, the current trends, and what is expected to transpire in this field in the future.

작가 소개

▶About the Author
- Anubhav Singh
Anubhav Singh, a web developer since before Bootstrap was launched, is an explorer of technologies, often pulling off crazy combinations of uncommon tech. An international rank holder in the Cyber Olympiad, he started off by developing his own social network and search engine as his first projects at the age of 15, which stood among the top 500 websites of India during their operational years. He's continuously developing software for the community in domains with roads less walked on. You can often catch him guiding students on how to approach ML or the web, or both together. He's also the founder of The Code Foundation, an AI-focused start-up. Anubhav is a Venkat Panchapakesan Memorial Scholarship awardee and an Intel Software Innovator.

- Rimjhim Bhadani
Rimjhim Bhadani is an open source lover. She has always believed in making the resources accessible to everyone at a minimal cost. She is a big fan of Mobile Application Development and has developed a number of projects most which aim to solve major and minor daily life challenges. She has been an Android mentor in Google Code-In and an Android developer for Google Summer of Code. Supporting her vision to serve the community, she is one among the six Indian students to be recognized as Google Venkat Panchapakesan Memorial Scholar and one among the three Indian students to be awarded the Grace Hopper Student Scholarship in 2019.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 도커로 구축한 랩에서 혼자 실습하며 배우는 네트워크 프로토콜 입문 (미야타 히로시, 이민성)
  • LLM과 RAG로 구현하는 AI 애플리케이션 (에디유, 대니얼김)
  • 나만의 MCP 서버 만들기 with 커서 AI (서지영)
  • 개정판 | 밑바닥부터 시작하는 딥러닝 1 (사이토 고키, 이복연)
  • 생성형 AI 인 액션 (아미트 바리, 이준)
  • 데이터 삽질 끝에 UX가 보였다 (이미진(란란))
  • 지식그래프 (이광배, 이채원)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 테디노트의 랭체인을 활용한 RAG 비법노트 심화편 (이경록)
  • 지속적 배포 (발렌티나 세르빌, 이일웅)
  • LLM 인 프로덕션 (크리스토퍼 브루소, 매슈 샤프)
  • 실전! 스프링 부트 3 & 리액트로 시작하는 모던 웹 애플리케이션 개발 (주하 힌쿨라, 변영인)
  • 혼자 공부하는 네트워크 (강민철)
  • 혼자 공부하는 컴퓨터 구조+운영체제 (강민철)
  • 객체지향의 사실과 오해 (조영호)
  • 그림으로 이해하는 알고리즘 (이시다 모리테루, 미야자키 쇼이치)
  • 코드 밖 커뮤니케이션 (재퀴 리드, 곽지원)
  • LLM을 활용한 실전 AI 애플리케이션 개발 (허정준, 정진호)
  • LLM 엔지니어링 (막심 라본, 폴 이우수틴)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전