본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Hands-On Edge Analytics with Azure IoT 상세페이지

Hands-On Edge Analytics with Azure IoT

Design and develop IoT applications with edge analytical solutions including Azure IoT Edge

  • 관심 0
소장
전자책 정가
23,000원
판매가
23,000원
출간 정보
  • 2020.05.21 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 253 쪽
  • 86.7MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781838821319
ECN
-
Hands-On Edge Analytics with Azure IoT

작품 정보

▶What You Will Learn
- Discover the key concepts and architectures used with edge analytics
- Understand how to use long-distance communication protocols for edge analytics
- Deploy Microsoft Azure IoT Edge to a Raspberry Pi
- Create Node-RED dashboards with MQTT and Text to Speech (TTS)
- Use MicroPython for developing edge analytics apps
- Explore various machine learning techniques and discover how machine learning is related to edge analytics
- Use camera and vision recognition algorithms on the sensory side to design an edge analytics app
- Monitor and audit edge analytics apps

▶Key Features
- Become well-versed with best practices for implementing automated analytical computations
- Discover real-world examples to extend cloud intelligence
- Develop your skills by understanding edge analytics and applying it to research activities

▶Who This Book Is For
If you are a data analyst, data architect, or data scientist who is interested in learning and practicing advanced automated analytical computations, then this book is for you. You will also find this book useful if you're looking to learn edge analytics from scratch. Basic knowledge of data analytics concepts is assumed to get the most out of this book.

▶What this book covers
- Chapter 1, Introduction to Edge Analytics, outlines how everything old is new again! The rise of the personal computer in the 1980s and 1990s led to a revolution in computing. Instead of so-called dumb terminals connected to a large computer, many computers were connected in a network spreading the processing power around. Edge analytics is like the personal computer revolution but for Internet-of-Things (IoT) devices. We will start this chapter by comparing edge analytics to the computer revolution before we discuss the advantages of using edge analytics in an IoT application. We will both look at the basic edge analytics architecture and introduce the Microsoft Azure IoT Edge platform.

- Chapter 2, How Does IoT Edge Analytics Work?, discusses the components used in an edge analytics application and how they fit together. Now that we understand what edge analytics is, let's turn our attention to how it works. In this chapter, we will conclude by looking at real-world edge analytics applications.

- Chapter 3, Communications Protocols Used in Edge Analytics, outlines how one part of an IoT or edge analytics application is the connection to the internet. The other part is the connection from our edge device to the sensors. In this chapter, we will explore ways by which we can connect our edge device to the internet. We will look at some of the longdistance technologies, as well as the familiar Wi-Fi protocol. In our exploration of Wi-Fi, we will gain an understanding as to the radio frequency spectrum and where different communication protocols fit into this spectrum. We will also take a look at Bluetooth and consider how we may use it in our applications.

- Chapter 4, Working with Microsoft Azure IoT Hub, is the beginning of our work with Azure IoT services using Microsoft Azure, after Chapter 1, Introduction to Edge Analytics, where we touched on Azure IoT Edge and Azure IoT. The lessons learned from this will provide a good basis for using the Raspberry Pi with Azure IoT Edge.

- Chapter 5, Using the Raspberry Pi with Azure IoT Edge, builds on what we covered in Chapter 4, Working with Microsoft Azure IoT Hub, where we learned a bit about Microsoft Azure and the IoT Hub in Azure. This background is essential to understanding Azure IoT Edge. In this chapter, we will learn how to install Azure IoT Edge on the Raspberry Pi and read data from it using the Microsoft Device Explorer.

- Chapter 6, Using MicroPython for Edge Analytics, covers MicroPython as a subset of Python 3. MicroPython was developed as a programming language for microcontrollers. With microcontrollers getting more and more powerful, learning MicroPython is becoming more essential. Imagine having the ability to take your Python knowledge and apply it to the physical world. Imagine building lightweight, energy-efficient, and powerful edge analytics applications with all the advantages of using the Python programming language. With MicroPython, you can.

- Chapter 7, Machine Learning and Edge Analytics, considers one of the most exciting fields in the realm of technology today—machine learning. As this technology matures and gets into the hands of more and more people, exciting new applications are created, such as a tool for detecting respiratory diseases based on audio analysis of breathing patterns. By combining edge analytics with machine learning, the capabilities on the sensory side are vast. This, combined with the ever-increasing power of microcontrollers and single-board computers such as the Raspberry Pi, means that the future looks very bright indeed for edge analytics and machine learning. In this chapter, we will explore the advantages of machine learning at the edge with a Raspberry Pi as we write a program to distinguish between the face of a person and the face of a dog. We will then jump into the exciting new world of Artificial Intelligence of Things (AIoT) as we take a small microcontroller and turn it into a QR code decoder tool.

- Chapter 8, Designing a Smart Doorbell with Visual Recognition, remembers how years ago, the only way to recognize who was knocking at your door without being too obvious was to peer through a little peephole near the top of the door. Observant visitors would notice the light disappear from the peephole once a face was pressed up against it on the other side. So, in other words, we really weren't fooling anyone into thinking we weren’t home if we decided that the visitor was not worthy of us opening the door. Times have certainly changed. We have the technology now to filter unwanted visitors for us without being detected. Using a camera and vision recognition algorithms on the sensory side, we will design an edge analytics application that alerts us to who is at the door.

- Chapter 9, Security and Privacy in an Edge Analytics World, covers how, when deploying an application to the internet, the risks posed by cybercriminals should be taken very seriously. Internet-enabled devices including edge computers are prone to cyber-attacks where they may be used to shut down websites or cause havoc on the internet, not to mention the destruction of our networked applications. In this chapter, we will cover security and in turn, privacy, when it comes to our edge analytics applications.

- Chapter 10, What Next?, examines where we are at the end of our edge analytics journey. I hope you enjoyed the ride. Tell them what you are going to tell them, tell them, and then tell them what you just told them—those are the great words of wisdom given to me by the more seasoned speakers at my Toastmasters club. In this chapter, we will recap what we have learned and then look ahead to the future of edge analytics.

작가 소개

▶About the Author
- Colin Dow
Colin Dow is the owner and chief engineer of Sigma Rockets and Aerospace Inc., a model aerospace business. He has enjoyed working with numerous educational facilities and hobbyists in delivering product sales, presentations, and aerospace workshops over the years. Colin has extensive experience of creating website content, educational documentation, and instructional videos. He has been a programmer since early home computers first caught his eye. He has worked as a software developer for some of Canada's largest companies, using technologies, such as Python, Java, J2EE, PHP, Pearl, Ruby on Rails, Apache, and SOAP web services. Colin has extensive experience of creating website content, educational documentation, and instructional videos.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 모던 소프트웨어 엔지니어링 (데이비드 팔리, 박재호)
  • 러닝 랭체인 (메이오 오신, 누노 캄포스)
  • 개정4판 | 스위프트 프로그래밍 (야곰)
  • LLM 엔지니어링 (막심 라본, 폴 이우수틴)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 미래를 선점하라 : AI Agent와 함께라면 당신도 디지털 천재 (정승원(디지털 셰르파))
  • 잘되는 머신러닝 팀엔 이유가 있다 (데이비드 탄, 에이다 양)
  • 혼자 만들면서 공부하는 딥러닝 (박해선)
  • 개정판 | 개발자 기술 면접 노트 (이남희)
  • 스테이블 디퓨전 실전 가이드 (시라이 아키히코, AICU 미디어 편집부)
  • 개정판|혼자 공부하는 파이썬 (윤인성)
  • 실리콘밸리에서 통하는 파이썬 인터뷰 가이드 (런젠펑, 취안수쉐)
  • 7가지 프로젝트로 배우는 LLM AI 에이전트 개발 (황자, 김진호)
  • 개발자를 위한 쉬운 쿠버네티스 (윌리엄 데니스, 이준)
  • 전략적 모놀리스와 마이크로서비스 (반 버논, 토마스 야스쿨라)
  • 요즘 우아한 AI 개발 (우아한형제들)
  • 최고의 프롬프트 엔지니어링 강의 (김진중)
  • [리얼타임] 버프스위트 활용과 웹 모의해킹 (김명근, 조승현)
  • 입문자를 위한 맞춤형 AI 프로그램 만들기 (다비드스튜디오)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전