본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Hands-On Artificial Intelligence for Banking 상세페이지

Hands-On Artificial Intelligence for Banking

A practical guide to building intelligent financial applications using machine learning techniques

  • 관심 0
소장
전자책 정가
21,000원
판매가
21,000원
출간 정보
  • 2020.07.10 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 232 쪽
  • 6.5MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781788833967
ECN
-
Hands-On Artificial Intelligence for Banking

작품 정보

▶What You Will Learn
- Automate commercial bank pricing with reinforcement learning
- Perform technical analysis using convolutional layers in Keras
- Use natural language processing (NLP) for predicting market responses and visualizing them using graph databases
- Deploy a robot advisor to manage your personal finances via Open Bank API
- Sense market needs using sentiment analysis for algorithmic marketing
- Explore AI adoption in banking using practical examples
- Understand how to obtain financial data from commercial, open, and internal sources

▶Key Features
- Understand how to obtain financial data via Quandl or internal systems
- Automate commercial banking using artificial intelligence and Python programs
- Implement various artificial intelligence models to make personal banking easy

▶Who This Book Is For
This is one of the most useful artificial intelligence books for machine learning engineers, data engineers, and data scientists working in the finance industry who are looking to implement AI in their business applications. The book will also help entrepreneurs, venture capitalists, investment bankers, and wealth managers who want to understand the importance of AI in finance and banking and how it can help them solve different problems related to these domains. Prior experience in the financial markets or banking domain, and working knowledge of the Python programming language are a must.

▶What this book covers
- Chapter 1, The Importance of AI in Banking, explains what AI is and discusses its applications in banking. This chapter also provides a detailed introduction to banking as a sector, the complexity of banking processes, and diversification in banking functions.

- Chapter 2, Time Series Analysis, covers time series analysis. This chapter explains time series analysis in detail with examples and explains how the Machine-to-Machine (M2M) concept can be helpful in the implementation of time series analysis.

- Chapter 3, Using Features and Reinforcement Learning to Automate Bank Financing, covers reinforcement learning. It also covers different AI modeling techniques using examples, as well as the business functions of the bank in the context of examples.

- Chapter 4, Mechanizing Capital Market Decisions, discusses the basic financial and capital market concepts. We will look at how AI can help us optimize the best capital structure by running risk models and generating sales forecasts using macro-economic data. The chapter also covers important machine learning modeling techniques such as learning optimization and linear regression.

- Chapter 5, Predicting the Future of Investment Bankers, introduces AI techniques followed by auto-syndication for new issues. We will see how capital can be obtained from interested investors. In the latter section of the chapter, we will cover the case of identifying acquirers and targets—a process that requires science to pick the ones that need banking services.

- Chapter 6, Automated Portfolio Management Using Treynor-Black Model and ResNet, focuses on the dynamics of investors. The chapter discusses portfolio management techniques and explains how to combine them with AI to automate decision-making when buying assets.

- Chapter 7, Sensing Market Sentiment for Algorithmic Marketing at Sell Side, focuses on the sell side of the financial market. The chapter provides details about securities firms and investment banks. This chapter also discusses sentiment analysis and covers an example of building a network using Neo4j.

- Chapter 8, Building Personal Wealth Advisers with Bank APIs, focuses on consumer banking. The chapter explains the requirements of managing the digital data of customers. The chapter also explains how to access open bank APIs and explains document layout analysis.

- Chapter 9, Mass Customization of Client Lifetime Wealth, explains how to combine data from the survey for personal data analysis. The chapter also discusses Neo4j, which is a graph database. In this chapter, we will build a chatbot to serve customers 24/7. We will also look at an example entailing the prediction of customer responses using natural language processing, Neo4j, and cipher languages to manipulate data from the Neo4j database.

- Chapter 10, Real World Considerations, serves as a summary of the AI modeling techniques covered in the previous chapters. The chapter also shows where to look for further knowledge of the domain.

작가 소개

▶About the Author
- Jeffrey Ng,CFA
Jeffrey Ng, CFA, works at Ping An OneConnect Bank (Hong Kong) Limited as Head of FinTech Solutions. His mandate is to advance the use of AI in banking and financial ecosystems. Prior to this, he headed up the data lab of BNP Paribas Asia Pacific, which constructed an AI and data analytics solution for business, and was the vice-chair of the French Chamber of Commerce's FinTech Committee in Hong Kong. In 2010, as one of the pioneers in applying client analytics to investment banking, he built the analytics team for the bank. He has undertaken AI projects in retail and commercial banks with PwC Consulting and GE Money. He graduated from Hong Kong Polytechnic University in computing and management and holds an MBA in finance from the Chinese University of Hong Kong.

- Subhash Shah
Subhash Shah is an experienced solution architect. With 14 years of experience in software development, he works as an independent technical consultant now. He is an advocate of open source development and its utilization in solving critical business problems. His interests include Microservices architecture, Enterprise solutions, Machine Learning, Integrations and Databases. He is an admirer of quality code and test-driven development (TDD). His technical skills include translating business requirements into scalable architecture and designing sustainable solutions. He is a co-author of Hands-On High Performance with Spring 5, Hands-On AI for Banking and MySQL 8 Administrator's Guide. He has also been a technical reviewer for other books.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 나만의 MCP 서버 만들기 with 커서 AI (서지영)
  • 조코딩의 랭체인으로 AI 에이전트 서비스 만들기 (우성우, 조동근)
  • 아키텍트 첫걸음 (요네쿠보 다케시, 조다롱)
  • 지속적 배포 (발렌티나 세르빌, 이일웅)
  • 개정2판 | 시작하세요! 도커/쿠버네티스 (용찬호)
  • 개정2판 | 파인만의 컴퓨터 강의 (리처드 파인만, 서환수)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 개정2판 | 인프라 엔지니어의 교과서 (사노 유타카, 김성훈)
  • 모던 소프트웨어 엔지니어링 (데이비드 팔리, 박재호)
  • AI 에이전트 인 액션 (마이클 래넘, 류광)
  • 코드 너머, 회사보다 오래 남을 개발자 (김상기, 배문교)
  • 핸즈온 생성형 AI (오마르 산세비에로, 페드로 쿠엥카)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 이것이 스프링 부트다 with 자바 (김희선)
  • 챗GPT, 글쓰기 코치가 되어 줘 (이석현)
  • 실전 ComfyUI (우희철)
  • 윌 라슨의 엔지니어링 리더십 (윌 라슨, 임백준)
  • LLM을 활용한 실전 AI 애플리케이션 개발 (허정준, 정진호)
  • 혼자 공부하는 네트워크 (강민철)
  • 프로덕트 매니지먼트의 기술 (맷 르메이, 권원상)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전