본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Deep Learning for Beginners 상세페이지

Deep Learning for Beginners

A beginner's guide to getting up and running with deep learning from scratch using Python

  • 관심 0
소장
전자책 정가
23,000원
판매가
23,000원
출간 정보
  • 2020.09.18 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 416 쪽
  • 51.9MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781838647582
ECN
-
Deep Learning for Beginners

작품 정보

Implement supervised, unsupervised, and generative deep learning (DL) models using Keras and Dopamine with TensorFlow

▶Book Description
With information on the web exponentially increasing, it has become more difficult than ever to navigate through everything to find reliable content that will help you get started with deep learning. This book is designed to help you if you're a beginner looking to work on deep learning and build deep learning models from scratch, and you already have the basic mathematical and programming knowledge required to get started.

The book begins with a basic overview of machine learning, guiding you through setting up popular Python frameworks. You will also understand how to prepare data by cleaning and preprocessing it for deep learning, and gradually go on to explore neural networks. A dedicated section will give you insights into the working of neural networks by helping you get hands-on with training single and multiple layers of neurons. Later, you will cover popular neural network architectures such as CNNs, RNNs, AEs, VAEs, and GANs with the help of simple examples, and learn how to build models from scratch. At the end of each chapter, you will find a question and answer section to help you test what you've learned through the course of the book.

By the end of this book, you'll be well-versed with deep learning concepts and have the knowledge you need to use specific algorithms with various tools for different tasks.

▶What You Will Learn
⦁ Implement recurrent neural networks (RNNs) and long short-term memory (LSTM) for image classification and natural language processing tasks
⦁ Explore the role of convolutional neural networks (CNNs) in computer vision and signal processing
⦁ Discover the ethical implications of deep learning modeling
⦁ Understand the mathematical terminology associated with deep learning
⦁ Code a generative adversarial network (GAN) and a variational autoencoder (VAE) to generate images from a learned latent space
⦁ Implement visualization techniques to compare AEs and VAEs

▶Key Features
⦁ Understand the fundamental machine learning concepts useful in deep learning
⦁ Learn the underlying mathematical concepts as you implement deep learning models from scratch
⦁ Explore easy-to-understand examples and use cases that will help you build a solid foundation in DL

▶Who This Book Is For
This book is for aspiring data scientists and deep learning engineers who want to get started with the fundamentals of deep learning and neural networks. Although no prior knowledge of deep learning or machine learning is required, familiarity with linear algebra and Python programming is necessary to get started.

▶What this book covers
- Chapter 1, Introduction to Machine Learning, gives an overview of machine learning. It introduces the motivation behind machine learning and the terminology that is commonly used in the field. It also introduces deep learning and how it fits in the realm of artificial intelligence.

- Chapter 2, Setup and Introduction to Deep Learning Frameworks, helps you in the process of setting up TensorFlow and Keras and introduces their usefulness and purpose in deep learning. This chapter also briefly introduces other deep learning libraries to get you acquainted with them in some small way.

- Chapter 3, Preparing Data, introduces you to the main concepts behind data processing to make it useful in deep learning. It will cover essential concepts of formatting outputs and inputs that are categorical or real-valued, as well as exploring techniques for augmenting data or reducing the dimensions of data.

- Chapter 4, Learning from Data, introduces the most elementary concepts around the theory of deep learning, including measuring performance on regression and classification as well as the identification of overfitting. It also offers some warnings about optimizing hyperparameters.

- Chapter 5, Training a Single Neuron, introduces the concept of a neuron and connects it to the perceptron model, which learns from data in a simple manner. The perceptron model is key to understanding basic neural models that learn from data. It also exposes the problem of non-linearly separable data.

- Chapter 6, Training Multiple Layers of Neurons, brings you face to face with the first challenges of deep learning using the multi-layer perceptron algorithm, such as gradient descent techniques for error minimization, and hyperparameter optimization to achieve generalization.

- Chapter 7, Autoencoders, describes the AE model by explaining the necessity of both encoding and decoding layers. It explores the loss functions associated with the autoencoder problem and it applies it to the dimensionality reduction problem and data visualization.

- Chapter 8, Deep Autoencoders, introduces the idea of deep belief networks and the significance of this type of deep unsupervised learning. It explains such concepts by introducing deep AEs and contrasting them with shallow AEs.

- Chapter 9, Variational Autoencoders, introduces the philosophy behind generative models in the unsupervised deep learning field and their importance in the production of models that are robust against noise. It presents the VAE as a better alternative to a deep AE when working with perturbed data.

- Chapter 10, Restricted Boltzmann Machines, complements the book's coverage of deep belief models by presenting RBMs. The backward-forward nature of RBMs is introduced and contrasted with the forward-only nature of AEs. The chapter compares RBMs and AEs on the problem of data dimensionality reduction using visual representations of the reduced data.

- Chapter 11, Deep and Wide Neural Networks, explains the difference in performance and complexities of deep versus wide neural networks. It introduces the concept of dense networks and sparse networks in terms of the connections between neurons.

- Chapter 12, Convolutional Neural Networks, introduces CNNs, starting with the convolution operation and moving forward to ensemble layers of convolutional operations aiming to learn filters that operate over data. The chapter concludes by showing how to visualize the learned filters.

- Chapter 13, Recurrent Neural Networks, presents the most fundamental concepts of recurrent networks, exposing their shortcomings to justify the existence and success of long short-term memory models. Sequential models are explored with applications for image processing and natural language processing.

- Chapter 14, Generative Adversarial Networks, introduces the semi-supervised learning approach of GANs, which belong to the family of adversarial learning. The chapter explains the concepts of generator and discriminator and talks about why having good approximations to the distribution of the training data can lead to the success of a model in, for example, the production of data from random noise.

- Chapter 15, Final Remarks on the Future of Deep Learning, briefly exposes you to the new exciting topics and opportunities in deep learning. Should you want to continue your learning, you will find here other resources from Packt Publishing that you can use to move forward in this field.

작가 소개

▶About the Author
- Dr. Pablo Rivas
Dr. Pablo Rivas is an assistant professor of computer science at Baylor University in Texas. He worked in industry for a decade as a software engineer before becoming an academic. He is a senior member of the IEEE, ACM, and SIAM. He was formerly at NASA Goddard Space Flight Center performing research. He is an ally of women in technology, a deep learning evangelist, machine learning ethicist, and a proponent of the democratization of machine learning and artificial intelligence in general. He teaches machine learning and deep learning. Dr. Rivas is a published author and all his papers are related to machine learning, computer vision, and machine learning ethics. Dr. Rivas prefers Vim to Emacs and spaces to tabs.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 모던 소프트웨어 엔지니어링 (데이비드 팔리, 박재호)
  • 요즘 우아한 AI 개발 (우아한형제들)
  • 조코딩의 AI 비트코인 자동 매매 시스템 만들기 (조동근)
  • 러닝 랭체인 (메이오 오신, 누노 캄포스)
  • 개정판 | 혼자 공부하는 머신러닝+딥러닝 (박해선)
  • 웹 접근성 바이블 (이하라 리키야, 고바야시 다이스케)
  • Do it! LLM을 활용한 AI 에이전트 개발 입문 (이성용)
  • 컴퓨터 밑바닥의 비밀 (루 샤오펑, 김진호)
  • 7가지 프로젝트로 배우는 LLM AI 에이전트 개발 (황자, 김진호)
  • 개정4판 | 스위프트 프로그래밍 (야곰)
  • LLM 엔지니어링 (막심 라본, 폴 이우수틴)
  • 멀티패러다임 프로그래밍 (유인동)
  • LLM 서비스 설계와 최적화 (슈레야스 수브라마니암, 김현준)
  • 테스트 너머의 QA 엔지니어링 (김명관)
  • 게임 시나리오 기획자를 위한 안내서 (양정윤)
  • 혼자 공부하는 네트워크 (강민철)
  • 개정판 | <소문난 명강의> 레트로의 유니티 6 게임 프로그래밍 에센스 (이제민)
  • 확산 모델의 수학 (오카노하라 다이스케, 손민규)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전