본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Artificial Intelligence with Python Cookbook 상세페이지

Artificial Intelligence with Python Cookbook

Proven recipes for applying AI algorithms and deep learning techniques using TensorFlow 2.x and PyTorch 1.6

  • 관심 0
소장
전자책 정가
23,000원
판매가
23,000원
출간 정보
  • 2020.10.30 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 459 쪽
  • 14.6MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781789137965
UCI
-
Artificial Intelligence with Python Cookbook

작품 정보

Work through practical recipes to learn how to solve complex machine learning and deep learning problems using Python

▶Book Description
Artificial intelligence (AI) plays an integral role in automating problem-solving. This involves predicting and classifying data and training agents to execute tasks successfully. This book will teach you how to solve complex problems with the help of independent and insightful recipes ranging from the essentials to advanced methods that have just come out of research.

Artificial Intelligence with Python Cookbook starts by showing you how to set up your Python environment and taking you through the fundamentals of data exploration. Moving ahead, you'll be able to implement heuristic search techniques and genetic algorithms. In addition to this, you'll apply probabilistic models, constraint optimization, and reinforcement learning. As you advance through the book, you'll build deep learning models for text, images, video, and audio, and then delve into algorithmic bias, style transfer, music generation, and AI use cases in the healthcare and insurance industries. Throughout the book, you'll learn about a variety of tools for problem-solving and gain the knowledge needed to effectively approach complex problems.

By the end of this book on AI, you will have the skills you need to write AI and machine learning algorithms, test them, and deploy them for production.

▶What You Will Learn
⦁Implement data preprocessing steps and optimize model hyperparameters
⦁Delve into representational learning with adversarial autoencoders
⦁Use active learning, recommenders, knowledge embedding, and SAT solvers
⦁Get to grips with probabilistic modeling with TensorFlow probability
⦁Run object detection, text-to-speech conversion, and text and music generation
⦁Apply swarm algorithms, multi-agent systems, and graph networks
⦁Go from proof of concept to production by deploying models as microservices
⦁Understand how to use modern AI in practice

▶Key Features
⦁Get up and running with artificial intelligence in no time using hands-on problem-solving recipes
⦁Explore popular Python libraries and tools to build AI solutions for images, text, sounds, and images
⦁Implement NLP, reinforcement learning, deep learning, GANs, Monte-Carlo tree search, and much more

▶Who This Book Is For
This AI machine learning book is for Python developers, data scientists, machine learning engineers, and deep learning practitioners who want to learn how to build artificial intelligence solutions with easy-to-follow recipes. You'll also find this book useful if you're looking for state-of-the-art solutions to perform different machine learning tasks in various use cases. Basic working knowledge of the Python programming language and machine learning concepts will help you to work with code effectively in this book.

▶What this book covers
⦁Chapter 1, Getting Started with Artificial Intelligence in Python, describes a basic setup with Python for data crunching and AI. We'll perform data loading in pandas, plotting, and writing first models in scikit-learn and Keras. Since data preparation is such a timeconsuming activity, we will present state-of-the-art techniques to facilitate this activity.

⦁Chapter 2, Advanced Topics in Supervised Machine Learning, explains how to deal with common issues in supervised machine learning problems, such as class imbalance, time series, and dealing with algorithmic bias.

⦁Chapter 3, Patterns, Outliers, and Recommendations, goes through an example involving clustering in real-world situations, and how to detect anomalies and outliers in data using sklearn and Keras. Then we will cover how to build a nearest neighbor search for fuzzy string matching, collaborative filtering by building a latent space, and fraud detection in a graph network.

⦁Chapter 4, Probabilistic Modeling, explains how to build probabilistic models for predicting stock prices, and how we estimate customer lifetimes, diagnose a disease, and quantify credit risk under conditions of uncertainty.

⦁Chapter 5, Heuristic Search Techniques and Logical Inference, introduces a broad class of problem solving tools, starting with ontologies and knowledge-based reasoning, through to optimization in the context of satisfiability, and combinatorial optimization with methods such as Particle Swarm Optimization, a genetic algorithm. We will simulate the spread of a pandemic in a multi-agent system, implement a Monte-Carlo tree search for a chess engine, we'll write a basic logic solver, and we'll embed knowledge through a graph algorithm.

⦁Chapter 6, Deep Reinforcement Learning, applies multi-armed bandits to website optimization, and implements the REINFORCE algorithm for control tasks and a deep Q network for a simple game.

⦁Chapter 7, Advanced Image Applications, takes you on a journey from more basic to state-ofthe- art approaches in image recognition. We'll then learn how to create image samples using generative adversarial networks, and then perform style transfer using an adversarial autoencoder.

⦁Chapter 8, Working with Moving Images, starts with image detection on a video feed and then creates videos using a deep fake model.

⦁Chapter 9, Deep Learning in Audio and Speech, classifies different voice commands, before going through a text-to-speech architecture, and concludes with a recipe for modeling and generating sequences of music with a recurrent neural network.

⦁Chapter 10, Natural Language Processing, explains how to classify sentiment, create a chatbot, and translate a text using sequence-to-sequence models. Finally, we'll attempt to write a popular novel using state-of-the-art text generation models.

⦁Chapter 11, Artificial Intelligence in Production, covers monitoring and model versioning, visualizations as dashboards, and explains how to secure a model against malicious hacking attacks that could leak user data.

작가 소개

▶About the Author
- Ben Auffarth
Ben Auffarth is a full-stack data scientist with more than 15 years of work experience. With a background and Ph.D. in computational and cognitive neuroscience, he has designed and conducted wet lab experiments on cell cultures, analyzed experiments with terabytes of data, run brain models on IBM supercomputers with up to 64k cores, built production systems processing hundreds of thousands of transactions per day, and trained neural networks on millions of text documents. He resides in West London with his family, where you might find him in a playground with his young son. He co-founded and is the former president of Data Science Speakers, London.

리뷰

1.0

구매자 별점
1명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
  • 설명도 좀 빈약하고, YOLO 같은 경우는 정식 사이트 링크도 아닌데다가, 링크도 깨져있음 따라서 책 기준으로 실습도 안되는데, 설명용 이미지하고 소스 빼면 빈약함, 오히려 Keras 홈페이지가 설명 이미지와 소스, 설명이 더 많음 파이썬 AI 나 딥러닝 보려면 그냥 다른 책 보기를 권장

    cos***
    2021.03.07
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 바이브 코딩 너머 개발자 생존법 (애디 오스마니, 강민혁)
  • 요즘 당근 AI 개발 (당근 팀)
  • AI 엔지니어링 (칩 후옌, 변성윤)
  • 요즘 바이브 코딩 클로드 코드 완벽 가이드 (최지호(코드팩토리))
  • 요즘 개발자를 위한 시스템 설계 수업 (디렌드라 신하 , 테자스 초프라)
  • 밑바닥부터 만들면서 배우는 LLM (세바스찬 라시카, 박해선)
  • 핸즈온 바이브 코딩 (정도현)
  • 밑바닥부터 시작하는 웹 브라우저 (파벨 판체카, 크리스 해럴슨)
  • 0과 1 사이 (가와타 아키라, 고이케 유키)
  • 할루시네이션을 줄여주는 프롬프트 엔지니어링 (한성민 )
  • AI 프로덕트 기획과 운영 (마릴리 니카, 오성근)
  • 그림으로 이해하는 챗GPT 구조와 기술 (나카타니 슈요, 박광수)
  • 스프링 부트 3와 스프링 클라우드를 활용한 마이크로서비스 구축 (마그누스 라르손, 트랜스메이트)
  • MCP 실전 활용 & 서버 개발 핵심 가이드 (AI튜터랩)
  • 플러터 엔지니어링 (마지드 하지안, 한국 플러터 커뮤니티)
  • n8n 첫걸음 업무 자동화 부터 AI 챗봇 까지 (문세환)
  • LUVIT ♥ 실전 백엔드 러스트 Axum 프로그래밍 (윤인도)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 그림과 실습으로 배우는 도커 & 쿠버네티스 (오가사와라 시게타카, 심효섭)
  • 조코딩의 랭체인으로 AI 에이전트 서비스 만들기 (우성우, 조동근)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전