본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Hands-On Machine Learning with ML.NET 상세페이지

Hands-On Machine Learning with ML.NET

Getting started with Microsoft ML.NET to implement popular machine learning algorithms in C#

  • 관심 0
소장
전자책 정가
24,000원
판매가
24,000원
출간 정보
  • 2020.03.27 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 287 쪽
  • 18.5MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781789804294
ECN
-
Hands-On Machine Learning with ML.NET

작품 정보

Create, train, and evaluate various machine learning models such as regression, classification, and clustering using ML.NET, Entity Framework, and ASP.NET Core

▶What You Will Learn
⦁ Understand the framework, components, and APIs of ML.NET using C#
⦁ Develop regression models using ML.NET for employee attrition and file classification
⦁ Evaluate classification models for sentiment prediction of restaurant reviews
⦁ Work with clustering models for file type classifications
⦁ Use anomaly detection to find anomalies in both network traffic and login history
⦁ Work with ASP.NET Core Blazor to create an ML.NET enabled web application
⦁ Integrate pre-trained TensorFlow and ONNX models in a WPF ML.NET application for image classification and object detection

▶Key Features
⦁ Get well-versed with the ML.NET framework and its components and APIs using practical examples
⦁ Learn how to build, train, and evaluate popular machine learning algorithms with ML.NET offerings
⦁ Extend your existing machine learning models by integrating with TensorFlow and other libraries

▶Who This Book Is For
If you are a .NET developer who wants to implement machine learning models using ML.NET, then this book is for you. This book will also be beneficial for data scientists and machine learning developers who are looking for effective tools to implement various machine learning algorithms. A basic understanding of C# or .NET is mandatory to grasp the concepts covered in this book effectively.

▶What this book covers
⦁ Chapter 1, Getting Started with Machine Learning and ML.NET, talks about what machine learning is and how important machine learning is in our society today. It also introduces ML.NET and talks in more detail about getting started with it after learning about the concepts of machine learning and how they relate.

⦁ Chapter 2, Setting Up the ML.NET Environment, talks in more detail about getting started with ML.NET, continuing the overview of machine learning and how ML.NET can assist in both developing and running models in both new and existing applications. You will ensure your development environment is set up and the chapter ends with a simple pretrained model in a console application to demonstrate that you are ready to proceed with the training.

⦁ Chapter 3, Regression Model, talks about using a regression and logistic regression model in ML.NET in addition to the math and what problems these models can help to solve. In addition, the chapter provides a step-by-step explanation of how to create and work with both a regression model and a logistic regression model in ML.NET. The end of the chapter details a quick console application using the dataset and both the models in ML.NET.

⦁ Chapter 4, Classification Model, talks about using the classifications trainer models in ML.NET and what problems a classification model can help to solve. For this chapter, we will create two applications to demonstrate the classification trainer support in ML.NET. The first predicts whether a car is of good value based on the several attributes and comparative prices using the FastTree trainer that ML.NET provides. The second application takes email data (Subject, Body, Sender) with the SDCA trainer in ML.NET to classify the email as an Order, Spam or Friend. Through these applications, you will also learn how to evaluate classification models.

⦁ Chapter 5, Clustering Model, talks about using the k-means clustering trainer in ML.NET in addition to what problems a clustering model can help to solve. In this chapter, we will use the k-means cluster trainer that ML.NET provides in order to create an example application that will classify files as either executables, documents, or scripts. In addition, you will learn how to evaluate clustering models in ML.NET.

⦁ Chapter 6, Anomaly Detection Model, talks about using an anomaly detection model in ML.NET in addition to what problems an anomaly detection model can help to solve. For this chapter, we will create two example applications. The first uses ML.NET with SSA to detect Network Traffic anomalies, while the second example uses ML.NET with PCA to detect anomalies in a series of user logins. With these applications, we will also look at how you can evaluate your anomaly detection model once trained.

⦁ Chapter 7, Matrix Factorization Model, talks about using a matrix factorization model in ML.NET in addition to the math and what problems a matrix factorization model can help to solve. In this chapter, we will create a music recommendation application using the matrix factorization trainer that ML.NET provides. Using several data points this recommendation engine will recommend music based on the training data provided to the model. In addition, after creating this application we will learn how to evaluate a matrix factorization model in ML.NET.

⦁ Chapter 8, Using ML.NET with .NET Core and Forecasting, covers a real-world application utilizing .NET Core and utilizes both a regression and time series model to demonstrate forecasting on stock shares.

⦁ Chapter 9, Using ML.NET with ASP.NET Core, covers a real-world application utilizing ASP.NET with a frontend to upload a file to determine whether it is malicious or not. This chapter focuses on using a binary classifier and how to integrate it into an ASP.NET application.

⦁ Chapter 10, Using ML.NET with UWP, covers a real-world application utilizing UWP and ML.NET. The application will utilize ML.NET to classify whether the web page content is malicious. The chapter will also cover UWP application design and MVVM briefly to give a true production-ready sample app to build on or adapt to other applications for using UWP with ML.NET.

⦁ Chapter 11, Training and Building Production Models, covers training a model at scale with all of the considerations, along with the proper training of a production model using the DMTP project. The lessons learned include obtaining proper training sets (diversity being key), proper features, and the true evaluation of your model. The focus of this chapter is on tips, tricks, and best practices for training production-ready models.

⦁ Chapter 12, Using TensorFlow with ML.NET, talks about using a pre-trained TensorFlow model with ML.NET to determine whether a car is in a picture or not with a UWP application.

⦁ Chapter 13, Using ONNX with ML.NET, talks about using a pre-trained ONNX model with ML.NET in addition to the value added by taking a pre-existing ONNX format model into ML.NET directly.

작가 소개

▶About the Author
- Jarred Capellman
Jarred Capellman is a Director of Engineering at SparkCognition, a cutting-edge artificial intelligence company located in Austin, Texas. At SparkCognition, he leads the engineering and data science team on the industry-leading machine learning endpoint protection product, DeepArmor, combining his passion for software engineering, cybersecurity, and data science. In his free time, he enjoys contributing to GitHub daily on his various projects and is working on his DSc in cybersecurity, focusing on applying machine learning to solving network threats. He currently lives just outside of Austin, Texas, with his wife, Amy.

리뷰

3.0

구매자 별점
1명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
  • 단순 예제 나열 수준이라 별로 도움이 안됩니다.

    hyo***
    2022.01.14
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • AI 에이전트 생태계 (이주환)
  • 헤드 퍼스트 소프트웨어 아키텍처 (라주 간디, 마크 리처드)
  • 깃허브 액션으로 구현하는 실전 CI/CD 설계와 운영 (노무라 도모키, 김완섭)
  • 현장에서 통하는 도메인 주도 설계 실전 가이드 (마스다 토오루, 타나카 히사테루)
  • 딥러닝 제대로 이해하기 (사이먼 J. D. 프린스, 고연이)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 네이처 오브 코드 (자바스크립트판) (다니엘 쉬프만, 윤인성)
  • 도커로 구축한 랩에서 혼자 실습하며 배우는 네트워크 프로토콜 입문 (미야타 히로시, 이민성)
  • 개정판 | Do it! 플러터 앱 개발 & 출시하기 (조준수)
  • 모던 리액트 Deep Dive (김용찬)
  • 그로킹 동시성 (키릴 보브로프, 심효섭)
  • 해커톤 (노아론)
  • LLM과 RAG로 구현하는 AI 애플리케이션 (에디유, 대니얼김)
  • 이게 되네? 클로드 MCP 미친 활용법 27제 (박현규)
  • 개정2판 | 시작하세요! 도커/쿠버네티스 (용찬호)
  • 개정2판 | 파인만의 컴퓨터 강의 (리처드 파인만, 서환수)
  • npm Deep Dive (전유정, 김용찬)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 딥러닝 프로젝트를 위한 허깅페이스 실전 가이드 (윤대희, 김동화)
  • 한 권으로 배우는 게임 프로그래밍 (박태준, 박효재)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전