본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Deep Learning with R Cookbook 상세페이지

Deep Learning with R Cookbook

Over 45 unique recipes to delve into neural network techniques using R 3.5.x

  • 관심 0
소장
전자책 정가
22,000원
판매가
22,000원
출간 정보
  • 2020.02.21 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 322 쪽
  • 15.0MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781789808278
UCI
-
Deep Learning with R Cookbook

작품 정보

Tackle the complex challenges faced while building end-to-end deep learning models using modern R libraries

▶What You Will Learn
⦁ Work with different datasets for image classification using CNNs
⦁ Apply transfer learning to solve complex computer vision problems
⦁ Use RNNs and their variants such as LSTMs and Gated Recurrent Units (GRUs) for sequence data generation and classification
⦁ Implement autoencoders for DL tasks such as dimensionality reduction, denoising, and image colorization
⦁ Build deep generative models to create photorealistic images using GANs and VAEs
⦁ Use MXNet to accelerate the training of DL models through distributed computing

▶Key Features
⦁ Understand the intricacies of R deep learning packages to perform a range of deep learning tasks
⦁ Implement deep learning techniques and algorithms for real-world use cases
⦁ Explore various state-of-the-art techniques for fine-tuning neural network models

▶Who This Book Is For
>This deep learning book is for data scientists, machine learning practitioners, deep learning researchers and AI enthusiasts who want to learn key tasks in deep learning domains using a recipe-based approach. A strong understanding of machine learning and working knowledge of the R programming language is mandatory.

▶What this book covers
⦁ Chapter 1, Understanding Neural Networks and Deep Neural Networks, will show us how to set up a deep learning environment to train models. The readers are then introduced to neural networks, starting from how neural networks work, what hidden layers are, what backpropagation is, and what activation functions are. This chapter uses the keras library to demonstrate the recipes.

⦁ Chapter 2, Working with Convolutional Neural Networks, will show us CNNs and will explain how they can be used to train models for image recognition and natural language processing based tasks. This chapter also covers various hyperparameters and optimizers used with CNNs.

⦁ Chapter 3, Recurrent Neural Networks in Action, will show us the fundamentals of RNNs with real-life implementation examples. We will also introduce LSTMs and gated recurrent units (GRUs), an extension of RNNs, and take a detailed walk-through of LSTM hyper-parameters. In addition to this, readers will learn how to build a bi-directional RNN model using Keras.

⦁ Chapter 4, Implementing Autoencoders with Keras, will introduce the implementation of various types of autoencoders using the keras library as the backend. Readers will also learn about various applications of autoencoders, such as dimensionality reduction and image coloring.

⦁ Chapter 5, Deep Generative Models, will show us the architecture of another method of deep neural networks, generative adversarial networks (GANs). We will demonstrate how to train a GAN model comprising of two pitting nets—a generator and a discriminator. This chapter also covers the practical implementation of variational autoencoders and compares them with GANs.

⦁ Chapter 6, Handling Big Data Using Large-Scale Deep Learning, contains case studies on highperformance computation involving large datasets utilizing GPUs. Readers will also be introduced to the parallel computation capabilities in R and libraries such as MXNet, which is designed for efficient GPU computing and state-of-the-art deep learning.

⦁ Chapter 7, Working with Text and Audio for NLP, contains case studies on various topics involving sequence data, including natural language processing (NLP) and speech recognition. The readers will implement end-to-end deep learning algorithms using various deep learning libraries.

⦁ Chapter 8, Deep Learning for Computer Vision, will provide end-to-end case studies on object detection and face identification.

⦁ Chapter 9, Implementing Reinforcement Learning, will walk us through the concepts of reinforcement learning step by step. Readers will learn about various methods, such as Markov Decision Processes, Q-Learning, and experience replay, and implement these methods in R using examples. Readers will also implement an end-to-end reinforcement learning example using R packages such as MDPtoolbox and Reinforcementlearning.

작가 소개

▶About the Author
- Swarna Gupta
Swarna Gupta holds a B.E. in computer science and has 6 years of experience in the data science space. She is currently working with Rolls Royce in the capacity of a data scientist. Her work revolves around leveraging data science and machine learning to create value for the business. She has extensively worked on IoT-based projects in the vehicle telematics and solar manufacturing industries.During her current association with Rolls Royce she worked in various deep learning techniques and solutions to solve fleet issues in aerospace domain. She also manages time from her busy schedule to be a regular pro-bono contributor to social organizations, helping them to solve specific business problems with the help of data science and machine learning.

- Rehan Ali Ansari
Rehan has a bachelors in Electrical and Electronics engineering with 5 years of experience in data science and machine learning field. He is currently associated with the digital competency at AP Moller Maersk Group in the capacity of a data scientist. He has a diverse background of working in multiple domains like fashion retail, IoT, renewable energy sector and trade finance. He is a strong believer of agile way of developing data driven machine learning and AI products. Out of his busy schedule he manages to explore new areas in the field of AI and robotics.

- Dipayan Sarkar
Dipayan Sarkar holds a Masters in Economics and comes with 17+ years of experience. Dipayan has won international challenges in predictive modeling and takes a keen interest in the mathematics behind machine learning techniques. Before opting to become an independent consultant and a mentor in the data science and machine learning space with various organizations and educational institutions, he had served in the capacity of a senior data scientist with Fortune 500 companies in the US and Europe. He is currently associated with Great Lakes Institute of Management as a visiting faculty (Analytics) and BML Munjal University as an adjunct faculty (Analytics and Machine Learning). He has co-authored a book on "Ensemble Machine Learning with Python" with PACKT Publishing.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 바이브 코딩 너머 개발자 생존법 (애디 오스마니, 강민혁)
  • 혼자 공부하는 바이브 코딩 with 클로드 코드 (조태호)
  • 요즘 당근 AI 개발 (당근 팀)
  • AI 자율학습 밑바닥부터 배우는 AI 에이전트 (다비드스튜디오)
  • 알아서 잘하는 에이전틱 AI 시스템 구축하기 (안자나바 비스와스, 릭 탈루크다르)
  • 도메인 주도 설계를 위한 함수형 프로그래밍 (스콧 블라신, 박주형)
  • 개정2판 | 소프트웨어 아키텍처 The Basics (마크 리처즈, 닐 포드)
  • AI 엔지니어링 (칩 후옌, 변성윤)
  • 연필과 종이로 풀어보는 딥러닝 수학 워크북 214제 (톰 예(Tom yeh) )
  • 밑바닥부터 만들면서 배우는 LLM (세바스찬 라시카, 박해선)
  • 러스트 클린 코드 (브렌든 매슈스, 윤인도)
  • 요즘 바이브 코딩 클로드 코드 완벽 가이드 (최지호(코드팩토리))
  • 처음부터 시작하는 Next.js / React 개발 입문 (미요시 아키, 김모세)
  • AI 자율학습 커서 × AI로 완성하는 나만의 웹 서비스 (성구(강성규) )
  • 개정판 | <소문난 명강의> 레트로의 유니티 6 게임 프로그래밍 에센스 (이제민)
  • 만화로 배우는 리눅스 시스템 관리 1권(PDF 버전) (Piro, 서수환)
  • 요즘 개발자를 위한 시스템 설계 수업 (디렌드라 신하 , 테자스 초프라)
  • 언리얼 엔진으로 배우는 게임 디자인 패턴 (스튜어트 버틀러, 톰 올리버)
  • 데이터베이스 설계, 이렇게 하면 된다 (미크, 윤인성)
  • 핸즈온 바이브 코딩 (정도현)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전