본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Hands-On Machine Learning with C++ 상세페이지

Hands-On Machine Learning with C++

Build, train, and deploy end-to-end machine learning and deep learning pipelines

  • 관심 0
소장
전자책 정가
30,000원
판매가
30,000원
출간 정보
  • 2020.05.15 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 515 쪽
  • 24.9MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781789952476
UCI
-
Hands-On Machine Learning with C++

작품 정보

Implement supervised and unsupervised machine learning algorithms using C++ libraries such as PyTorch C++ API, Caffe2, Shogun, Shark-ML, mlpack, and dlib with the help of real-world examples and datasets

▶Book Description
C++ can make your machine learning models run faster and more efficiently. This handy guide will help you learn the fundamentals of machine learning (ML), showing you how to use C++ libraries to get the most out of your data. This book makes machine learning with C++ for beginners easy with its example-based approach, demonstrating how to implement supervised and unsupervised ML algorithms through real-world examples.

This book will get you hands-on with tuning and optimizing a model for different use cases, assisting you with model selection and the measurement of performance. You'll cover techniques such as product recommendations, ensemble learning, and anomaly detection using modern C++ libraries such as PyTorch C++ API, Caffe2, Shogun, Shark-ML, mlpack, and dlib. Next, you'll explore neural networks and deep learning using examples such as image classification and sentiment analysis, which will help you solve various problems. Later, you'll learn how to handle production and deployment challenges on mobile and cloud platforms, before discovering how to export and import models using the ONNX format.

By the end of this C++ book, you will have real-world machine learning and C++ knowledge, as well as the skills to use C++ to build powerful ML systems.

▶What You Will Learn
⦁ Explore how to load and preprocess various data types to suitable C++ data structures
⦁ Employ key machine learning algorithms with various C++ libraries
⦁ Understand the grid-search approach to find the best parameters for a machine learning model
⦁ Implement an algorithm for filtering anomalies in user data using Gaussian distribution
⦁ Improve collaborative filtering to deal with dynamic user preferences
⦁ Use C++ libraries and APIs to manage model structures and parameters
⦁ Implement a C++ program to solve image classification tasks with LeNet architecture

▶Key Features
⦁ Become familiar with data processing, performance measuring, and model selection using various C++ libraries
⦁ Implement practical machine learning and deep learning techniques to build smart models
⦁ Deploy machine learning models to work on mobile and embedded devices

▶Who This Book Is For
You will find this C++ machine learning book useful if you want to get started with machine learning algorithms and techniques using the popular C++ language. As well as being a useful first course in machine learning with C++, this book will also appeal to data analysts, data scientists, and machine learning developers who are looking to implement different machine learning models in production using varied datasets and examples. Working knowledge of the C++ programming language is mandatory to get started with this book.

▶What this book covers
Hands-On Machine Learning with C++'s example-based approach will show you how to implement supervised and unsupervised ML algorithms with the help of real-world examples. The book also gives you hands-on experience of tuning and optimizing a model for different use cases, helping you to measure performance and model selection. You'll then cover techniques such as object classification and clusterization, product recommendations, ensemble learning, and anomaly detection using modern C++ libraries such as the PyTorch C++ API, Caffe2, Shogun, Shark-ML, mlpack, and dlib. Moving ahead, the chapters will take you through neural networks and deep learning using examples such as image classification and sentiment analysis, which will help you solve a wide range of problems.

Later, you'll learn how to handle production and deployment challenges on mobile and cloud platforms, before discovering how to export and import models using the ONNX format. By the end of this book, you'll have learned how to leverage C++ to build powerful ML systems.

⦁ Chapter 1, Introduction to Machine Learning with C++, will guide you through the necessary fundamentals of ML, including linear algebra concepts, ML algorithm types, and their building blocks.

⦁ Chapter 2, Data Processing, will show you how to load data from different file formats for ML model training and how to initialize dataset objects in various C++ libraries.

⦁ Chapter 3, Measuring Performance and Selecting Models, will show you how to measure the performance of various types of ML models, how to select the best set of hyperparameters to achieve better model performance, and how to use the grid search method in various C++ libraries for model selection.

⦁ Chapter 4, Clustering, will discuss algorithms for grouping objects by their essential characteristics, show why we usually use unsupervised algorithms for solving such types of tasks, and lastly, will outline the various types of clustering algorithms, along with their implementations and usage in different C++ libraries.

⦁ Chapter 5, Anomaly Detection, will discuss the basics of anomaly and novelty detection tasks and guide you through the different types of anomaly detection algorithms, their implementation, and their usage in various C++ libraries.

⦁ Chapter 6, Dimensionality Reduction, will discuss various algorithms for dimensionality reduction that preserve the essential characteristics of data, along with their implementation and usage in various C++ libraries.

⦁ Chapter 7, Classification, will show you what a classification task is and how it differs from a clustering task. You will be guided through various classification algorithms, their implementation, and their usage in various C++ libraries.

⦁ Chapter 8, Recommender Systems, will give you familiarity with recommender system concepts. You will be shown the different approaches to deal with recommendation tasks, and you will see how to solve such types of tasks using the C++ language.

⦁ Chapter 9, Ensemble Learning, will discuss various methods of combining several ML models to get better accuracy and to deal with learning problems. You will encounter ensemble implementations with the usage of different C++ libraries.

⦁ Chapter 10, Neural Networks for Image Classification, will give you familiarity with the fundamentals of artificial neural networks. You will encounter the essential building blocks, the required math concepts, and learning algorithms. You will be guided through different C++ libraries that provide functionality for neural network implementations. Also, this chapter will show you the implementation of a deep convolutional network for image classification with the PyTorch library.

⦁ Chapter 11, Sentiment Analysis with Recurrent Neural Networks, will guide you through the fundamentals of recurrent neural networks. You will learn about the different types of network cells, the required math concepts, and the differences of this learning algorithm compared to feedforward networks. Also, in this chapter, we will develop a recurrent neural network for sentiment analysis with the PyTorch library.

⦁ Chapter 12, Exporting and Importing Models, will show you how to save and load model parameters and architectures using various C++ libraries. Also, you will see how to use the ONNX format to load and use a pre-trained model with the C++ API of the Caffe2 library.

⦁ Chapter 13, Deploying Models on Mobile and Cloud Platforms, will guide you through the development of applications for image classification using neural networks for the Android and Google Compute Engine platforms.

작가 소개

▶About the Author
- Kirill Kolodiazhnyi
Kirill Kolodiazhnyi is a seasoned software engineer with expertise in custom software development. He has several years of experience building machine learning models and data products using C++. He holds a bachelor degree in Computer Science from the Kharkiv National University of Radio-Electronics. He currently works in Kharkiv, Ukraine where he lives with his wife and daughter.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 바이브 코딩 너머 개발자 생존법 (애디 오스마니, 강민혁)
  • 요즘 바이브 코딩 클로드 코드 완벽 가이드 (최지호(코드팩토리))
  • 그림으로 이해하는 도커와 쿠버네티스 (토쿠나가 코헤이 , 서수환)
  • 도메인 주도 설계를 위한 함수형 프로그래밍 (스콧 블라신, 박주형)
  • 개정2판 | 소프트웨어 아키텍처 The Basics (마크 리처즈, 닐 포드)
  • 알아서 잘하는 에이전틱 AI 시스템 구축하기 (안자나바 비스와스, 릭 탈루크다르)
  • 혼자 공부하는 바이브 코딩 with 클로드 코드 (조태호)
  • 요즘 당근 AI 개발 (당근 팀)
  • 개정판 | Do it! 점프 투 파이썬 (박응용)
  • 러스트 클린 코드 (브렌든 매슈스, 윤인도)
  • 개정판 | 혼자 공부하는 머신러닝+딥러닝 (박해선)
  • 혼자 공부하는 네트워크 (강민철)
  • 혼자 공부하는 컴퓨터 구조+운영체제 (강민철)
  • 쏙쏙 들어오는 자료구조 (마르첼로 라 로카, 김성원)
  • 그림으로 배우는 StatQuest 신경망 & AI 강의 (조시 스타머, 김태헌)
  • LLM 프로덕션 엔지니어링 (루이-프랑수아 부샤르, 루이 피터스)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • AI 자율학습 밑바닥부터 배우는 AI 에이전트 (다비드스튜디오)
  • 개정8판 | 유니티 교과서 (기타무라 마나미, 김은철)
  • 요즘 개발자를 위한 시스템 설계 수업 (디렌드라 신하 , 테자스 초프라)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전