본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Hands-On Vision and Behavior for Self-Driving Cars 상세페이지

Hands-On Vision and Behavior for Self-Driving Cars

Explore visual perception, lane detection, and object classification with Python 3 and OpenCV 4

  • 관심 0
소장
전자책 정가
26,000원
판매가
26,000원
출간 정보
  • 2020.10.23 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 374 쪽
  • 7.1MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781800201934
ECN
-
Hands-On Vision and Behavior for Self-Driving Cars

작품 정보

A practical guide to learning visual perception for self-driving cars for computer vision and autonomous system engineers

▶Book Description
The visual perception capabilities of a self-driving car are powered by computer vision. The work relating to self-driving cars can be broadly classified into three components - robotics, computer vision, and machine learning. This book provides existing computer vision engineers and developers with the unique opportunity to be associated with this booming field.

You will learn about computer vision, deep learning, and depth perception applied to driverless cars. The book provides a structured and thorough introduction, as making a real self-driving car is a huge cross-functional effort. As you progress, you will cover relevant cases with working code, before going on to understand how to use OpenCV, TensorFlow and Keras to analyze video streaming from car cameras. Later, you will learn how to interpret and make the most of lidars (light detection and ranging) to identify obstacles and localize your position. You'll even be able to tackle core challenges in self-driving cars such as finding lanes, detecting pedestrian and crossing lights, performing semantic segmentation, and writing a PID controller.

By the end of this book, you'll be equipped with the skills you need to write code for a self-driving car running in a driverless car simulator, and be able to tackle various challenges faced by autonomous car engineers.

▶What You Will Learn
⦁ Understand how to perform camera calibration
⦁ Become well-versed with how lane detection works in self-driving cars using OpenCV
⦁ Explore behavioral cloning by self-driving in a video-game simulator
⦁ Get to grips with using lidars
⦁ Discover how to configure the controls for autonomous vehicles
⦁ Use object detection and semantic segmentation to locate lanes, cars, and pedestrians
⦁ Write a PID controller to control a self-driving car running in a simulator

▶Key Features
⦁Explore the building blocks of the visual perception system in self-driving cars
⦁Identify objects and lanes to define the boundary of driving surfaces using open-source tools like OpenCV and Python
⦁Improve the object detection and classification capabilities of systems with the help of neural networks

▶Who This Book Is For
This book is for software engineers who are interested in learning about technologies that drive the autonomous car revolution. Although basic knowledge of computer vision and Python programming is required, prior knowledge of advanced deep learning and how to use sensors (lidar) is not needed.

▶What this book covers
⦁ Chapter 1, OpenCV Basics and Camera Calibration, is an introduction to OpenCV and NumPy; you will learn how to manipulate images and videos, and how to detect pedestrians using OpenCV; in addition, it explains how a camera works and how OpenCV can be used to calibrate it.

⦁ Chapter 2, Understanding and Working with Signals, describes the different types of signals: serial, parallel, digital, analog, single-ended, and differential, and explains some very important protocols: CAN, Ethernet, TCP, and UDP.

⦁ Chapter 3, Lane Detection, teaches you everything you need to know to detect the lanes in a road using OpenCV. It covers color spaces, perspective correction, edge detection, histograms, the sliding window technique, and the filtering required to get the best detection.

⦁ Chapter 4, Deep Learning with Neural Networks, is a practical introduction to neural networks, designed to quickly teach how to write a neural network. It describes neural networks in general and convolutional neural networks in particular. It introduces Keras, a deep learning module, and it shows how to use it to detect handwritten digits and to classify some images.

⦁ Chapter 5, Deep Learning Workflow, ideally complements Chapter 4, Deep Learning with Neural Networks, as it describes the theory of neural networks and the steps required in a typical workflow: obtaining or creating a dataset, splitting it into training, validation, and test sets, data augmentation, the main layers used in a classifier, and how to train, do inference, and retrain. The chapter also covers underfitting and overfitting and explains how to visualize the activations of the convolutional layers.

⦁ Chapter 6, Improving Your Neural Network, explains how to optimize a neural network, reducing its parameters, and how to improve its accuracy using batch normalization, early stopping, data augmentation, and dropout.

⦁ Chapter 7, Detecting Pedestrians and Traffic Lights, introduces you to CARLA, a self-driving car simulator, which we will use to create a dataset of traffic lights. Using a pre-trained neural network called SSD, we will detect pedestrians, cars, and traffic lights, and we will use a powerful technique called transfer learning to train a neural network to classify the traffic lights according to their colors.

⦁ Chapter 8, Behavioral Cloning, explains how to train a neural network to drive CARLA. It explains what behavioral cloning is, how to build a driving dataset using CARLA, how to create a network that's suitable for this task, and how to train it. We will use saliency maps to get an understanding of what the network is learning, and we will integrate it with CARLA to help it self-drive!

⦁ Chapter 9, Semantic Segmentation, is the final and most advanced chapter about deep learning, and it explains what semantic segmentation is. It details an extremely interesting architecture called DenseNet, and it shows how to adapt it to semantic segmentation.

⦁ Chapter 10, Steering, Throttle, and Brake Control, is about controlling a self-driving car. It explains what a controller is, focusing on PID controllers and covering the basics of MPC controllers. Finally, we will implement a PID controller in CARLA.

⦁ Chapter 11, Mapping Our Environments, is the final chapter. It discusses maps, localization, and lidar, and it describes some open source mapping tools. You will learn what Simultaneous Localization and Mapping (SLAM) is and how to implement it using the Ouster lidar and Google Cartographer.

작가 소개

▶About the Author
- Luca Venturi
Luca Venturi has extensive experience as a programmer with world-class companies, including Ferrari and Opera Software. He has also worked for some start-ups, including Activetainment (maker of the world's first smart bike), Futurehome (a provider of smart home solutions), and CompanyBook (whose offerings apply artificial intelligence to sales). He worked on the Data Platform team at Tapad (Telenor Group), making petabytes of data accessible to the rest of the company, and is now the lead engineer of Piano Software's analytical database.

- Krishtof Korda
Krishtof Korda grew up in a mountainside home over which the US Navy's Blue Angels flew during the Reno Air Races each year. A graduate from the University of Southern California and the USMC Officer Candidate School, he set the Marine Corps obstacle course record of 51 seconds. He took his love of aviation to the USAF, flying aboard the C-5M Super Galaxy as a flight test engineer for 5 years, and engineered installations of airborne experiments for the USAF Test Pilot School for 4 years. Later, he transitioned to designing sensor integrations for autonomous cars at Lyft Level 5. Now he works as an applications engineer for Ouster, integrating LIDAR sensors in the fields of robotics, AVs, drones, and mining, and loves racing Enduro mountain bikes.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 요즘 우아한 AI 개발 (우아한형제들)
  • 멀티패러다임 프로그래밍 (유인동)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 조코딩의 AI 비트코인 자동 매매 시스템 만들기 (조동근)
  • 최고의 프롬프트 엔지니어링 강의 (김진중)
  • 랭체인과 RAG로 배우는 실전 LLM 애플리케이션 개발 (양기빈, 조국일)
  • 개정판 | <소문난 명강의> 레트로의 유니티 6 게임 프로그래밍 에센스 (이제민)
  • 전략적 모놀리스와 마이크로서비스 (반 버논, 토마스 야스쿨라)
  • 실전! RAG 기반 생성형 AI 개발 (데니스 로스먼, 307번역랩)
  • 소프트웨어 엔지니어 가이드북 (게르겔리 오로스, 이민석)
  • 조코딩의 챗GPT API를 활용한 수익형 웹 서비스 만들기 (조동근)
  • 육각형 개발자 (최범균)
  • 혼자 공부하는 컴퓨터 구조+운영체제 (강민철)
  • 비전공자를 위한 이해할 수 있는 IT 지식 (최원영)
  • 코딩 테스트 합격자 되기(자바 편) (김희성)
  • FastAPI로 배우는 백엔드 프로그래밍 with 클린 아키텍처 (한용재)
  • LLM을 활용한 실전 AI 애플리케이션 개발 (허정준, 정진호)
  • 이것이 취업을 위한 컴퓨터 과학이다 with CS 기술 면접 (강민철)
  • 코딩 테스트 합격자 되기(자바스크립트 편) (이선협, 박경록)
  • 만들면서 배우는 클린 아키텍처 (톰 홈버그, 박소은)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전