본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Applied Deep Learning and Computer Vision for Self-Driving Cars 상세페이지

Applied Deep Learning and Computer Vision for Self-Driving Cars

Build autonomous vehicles using deep neural networks and behavior-cloning techniques

  • 관심 0
소장
전자책 정가
24,000원
판매가
24,000원
출간 정보
  • 2020.08.14 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 320 쪽
  • 93.0MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781838647025
ECN
-
Applied Deep Learning and Computer Vision for Self-Driving Cars

작품 정보

Explore self-driving car technology using deep learning and artificial intelligence techniques and libraries such as TensorFlow, Keras, and OpenCV

▶Book Description
Thanks to a number of recent breakthroughs, self-driving car technology is now an emerging subject in the field of artificial intelligence and has shifted data scientists' focus to building autonomous cars that will transform the automotive industry. This book is a comprehensive guide to use deep learning and computer vision techniques to develop autonomous cars.

Starting with the basics of self-driving cars (SDCs), this book will take you through the deep neural network techniques required to get up and running with building your autonomous vehicle. Once you are comfortable with the basics, you'll delve into advanced computer vision techniques and learn how to use deep learning methods to perform a variety of computer vision tasks such as finding lane lines, improving image classification, and so on. You will explore the basic structure and working of a semantic segmentation model and get to grips with detecting cars using semantic segmentation. The book also covers advanced applications such as behavior-cloning and vehicle detection using OpenCV, transfer learning, and deep learning methodologies to train SDCs to mimic human driving.

By the end of this book, you'll have learned how to implement a variety of neural networks to develop your own autonomous vehicle using modern Python libraries.

▶What you will learn
⦁Implement deep neural network from scratch using the Keras library
⦁Understand the importance of deep learning in self-driving cars
⦁Get to grips with feature extraction techniques in image processing using the OpenCV library
⦁Design a software pipeline that detects lane lines in videos
⦁Implement a convolutional neural network (CNN) image classifier for traffic signal signs
⦁Train and test neural networks for behavioral-cloning by driving a car in a virtual simulator
⦁Discover various state-of-the-art semantic segmentation and object detection architectures

▶Key Features
⦁Build and train powerful neural network models to build an autonomous car
⦁Implement computer vision, deep learning, and AI techniques to create automotive algorithms
⦁Overcome the challenges faced while automating different aspects of driving using modern Python libraries and architectures

▶Who This Book Is For
If you are a deep learning engineer, AI researcher, or anyone looking to implement deep learning and computer vision techniques to build self-driving blueprint solutions, this book is for you. Anyone who wants to learn how various automotive-related algorithms are built, will also find this book useful. Python programming experience, along with a basic understanding of deep learning, is necessary to get the most of this book.

▶What this book covers
⦁ Chapter 1, The Foundation of Self-Driving Cars, talks about the history and evolution of SDCs. It briefs you on different approaches used in SDCs. It also covers details about the advantages and disadvantages of SDCs, the challenges in creating them, as well as the levels of autonomy of an SDC.

⦁ Chapter 2, Dive Deep into Deep Neural Networks, covers how to go from a simple neural network to a deep neural network. We will learn about many concepts such as the activation function, normalization, regularization, and dropouts to make the training more robust, so we can train a network more efficiently.

⦁ Chapter 3, Implementing a Deep Learning Model Using Keras, covers the step-by-step implementation of a deep learning model using Keras. We are going to implement a deep learning model using Keras with the Auto-mpg dataset.

⦁ Chapter 4, Computer Vision for Self-Driving Cars, introduces advanced computer vision techniques for SDCs. This is one of the important chapters to get into computer vision. In this chapter, we will cover different OpenCV techniques that help in image preprocessing and feature extraction in SDC business problems.

⦁ Chapter 5, Finding Road Markings Using OpenCV, walks you through writing a software pipeline to identify the lane boundaries in a video from the front-facing camera in a SDC. This is a starter project using OpenCV to get into SDCs.

⦁ Chapter 6, Improving the Image Classifier with CNN, covers how to go from a simple neural network to a advance deep neural network. In this chapter, we will learn about the theory behind the convolutional neural network, and how a convolutional neural network helps to improve the performance of an image classifier. We will implement an image classifier project using the MNIST dataset.

⦁ Chapter 7, Road Sign Detection Using Deep Learning, looks at the training of a neural network to implement a traffic sign detector. This is the next step toward SDC implementation. In this chapter, we will create a model that reliably classified traffic signs, and learned to identify their most appropriate features independently.

⦁ Chapter 8, The Principles and Foundations of Semantic Segmentation, covers the basic structure and workings of semantic segmentation models, and all of the latest state-of-the-art methods.

⦁ Chapter 9, Implementation of Semantic Segmentation, looks at the implementation of ENET semantic segmentation architecture to detect pedestrians, vehicles, and so on. We will learn about the techniques we can apply to semantic segmentation using OpenCV, deep learning, and the ENet architecture. We will use the pre-trained ENet model to perform semantic segmentation on both images and video streams.

⦁ Chapter 10, Behavioral Cloning Using Deep Learning, implements behavioral cloning. Here, cloning means that our learning program will copy and clone human behavior such as our steering actions to mimic human driving. We will implement a behavior cloning project and test it in a simulator.

⦁ Chapter 11, Vehicle Detection Using OpenCV and Deep Learning, implements vehicle detection for SDCs using OpenCV and the pre-trained deep learning model YOLO. Using this model, we will create a software pipeline to perform object prediction on both images and videos.

⦁ Chapter 12, Next Steps, summarizes the previous chapters and ways to enhance the learning. This chapter also briefs you on sensor fusion, and covers techniques that can be tried out for advanced learning in SDCs.

작가 소개

▶About the Author
- Sumit Ranjan
Sumit Ranjan is a silver medalist in his Bachelor of Technology (Electronics and Telecommunication) degree. He is a passionate data scientist who has worked on solving business problems to build an unparalleled customer experience across domains such as, automobile, healthcare, semi-conductor, cloud-virtualization, and insurance.

He is experienced in building applied machine learning, computer vision, and deep learning solutions, to meet real-world needs. He was awarded Autonomous Self-Driving Car Scholar by KPIT Technologies. He has also worked on multiple research projects at Mercedes Benz Research and Development. Apart from work, his hobbies are traveling and exploring new places, wildlife photography, and blogging.

- Dr. S. Senthamilarasu
Dr. S. Senthamilarasu was born and raised in the Coimbatore, Tamil Nadu. He is a technologist, designer, speaker, storyteller, journal reviewer educator, and researcher. He loves to learn new technologies and solves real world problems in the IT industry. He has published various journals and research papers and has presented at various international conferences. His research areas include data mining, image processing, and neural network.

He loves reading Tamil novels and involves himself in social activities. He has also received silver medals in international exhibitions for his research products for children with an autism disorder. He currently lives in Bangalore and is working closely with lead clients.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 러닝 랭체인 (메이오 오신, 누노 캄포스)
  • LLM 엔지니어링 (막심 라본, 폴 이우수틴)
  • 조코딩의 AI 비트코인 자동 매매 시스템 만들기 (조동근)
  • 랭체인으로 RAG 개발하기 (서지영)
  • 멀티패러다임 프로그래밍 (유인동)
  • 개정2판 | 자바 최적화 (제임스 고프, 벤저민 J. 에번스)
  • 요즘 우아한 AI 개발 (우아한형제들)
  • Do it! LLM을 활용한 AI 에이전트 개발 입문 (이성용)
  • [리얼타임] 버프스위트 활용과 웹 모의해킹 (김명근, 조승현)
  • 개정3판 | UX/UI 디자이너를 위한 실무 피그마 (클레어 정)
  • 개발자를 위한 쉬운 쿠버네티스 (윌리엄 데니스, 이준)
  • 실전 ComfyUI (우희철)
  • 윌 라슨의 엔지니어링 리더십 (윌 라슨, 임백준)
  • MCP 혁신: 클로드로 엑셀, 한글, 휴가 등록부터 결재문서 자동화까지 with python (이호준, 차경림)
  • 플랫폼 엔지니어링 (이언 놀런드, 카미유 푸르니에)
  • LLM을 활용한 실전 AI 애플리케이션 개발 (허정준, 정진호)
  • 모던 소프트웨어 엔지니어링 (데이비드 팔리, 박재호)
  • 개정판 | 쉽고 빠르게 익히는 실전 LLM (시난 오즈데미르, 신병훈)
  • 스마트카 Smart Car 소프트웨어 엔지니어링 (신승환, 정민우)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전