본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Advanced Deep Learning with TensorFlow 2 and Keras Second Edition 상세페이지

Advanced Deep Learning with TensorFlow 2 and Keras Second Edition

Apply DL, GANs, VAEs, deep RL, unsupervised learning, object detection and segmentation, and more

  • 관심 0
소장
전자책 정가
23,000원
판매가
23,000원
출간 정보
  • 2020.02.28 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 513 쪽
  • 20.2MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781838825720
ECN
-
Advanced Deep Learning with TensorFlow 2 and Keras Second Edition

작품 정보

Updated and revised second edition of the bestselling guide to advanced deep learning with TensorFlow 2 and Keras

▶Book Description
Advanced Deep Learning with TensorFlow 2 and Keras, Second Edition is a completely updated edition of the bestselling guide to the advanced deep learning techniques available today. Revised for TensorFlow 2.x, this edition introduces you to the practical side of deep learning with new chapters on unsupervised learning using mutual information, object detection (SSD), and semantic segmentation (FCN and PSPNet), further allowing you to create your own cutting-edge AI projects.

Using Keras as an open-source deep learning library, the book features hands-on projects that show you how to create more effective AI with the most up-to-date techniques.

Starting with an overview of multi-layer perceptrons (MLPs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs), the book then introduces more cutting-edge techniques as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You will then learn about GANs, and how they can unlock new levels of AI performance.

Next, you'll discover how a variational autoencoder (VAE) is implemented, and how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans. You'll also learn to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI.


▶What You Will Learn
⦁Use mutual information maximization techniques to perform unsupervised learning
⦁Use segmentation to identify the pixel-wise class of each object in an image
⦁Identify both the bounding box and class of objects in an image using object detection
⦁Learn the building blocks for advanced techniques - MLPss, CNN, and RNNs
⦁Understand deep neural networks - including ResNet and DenseNet
⦁Understand and build autoregressive models – autoencoders, VAEs, and GANs
⦁Discover and implement deep reinforcement learning methods

▶Key Features
⦁Explore the most advanced deep learning techniques that drive modern AI results
⦁New coverage of unsupervised deep learning using mutual information, object detection, and semantic segmentation
⦁Completely updated for TensorFlow 2.x

▶Who This Book Is For
This is not an introductory book, so fluency with Python is required. The reader should also be familiar with some machine learning approaches, and practical experience with DL will also be helpful. Knowledge of Keras or TensorFlow 2.0 is not required but is recommended.

▶What this book covers
⦁ Chapter 1, Introducing Advanced Deep Learning with Keras, covers the key concepts of deep learning such as optimization, regularization, loss functions, fundamental layers, and networks and their implementation in tf.keras. This chapter serves as a review of both deep learning and tf.keras using the sequential API.

⦁ Chapter 2, Deep Neural Networks, discusses the functional API of tf.keras. Two widely used deep network architectures, ResNet and DenseNet, are examined and implemented in tf.keras using the functional API.

⦁ Chapter 3, Autoencoders, covers a common network structure called the autoencoder, which is used to discover the latent representation of input data. Two example applications of autoencoders, denoising and colorization, are discussed and implemented in tf.keras.

⦁ Chapter 4, Generative Adversarial Networks (GANs), discusses one of the recent significant advances in deep learning. GAN is used to generate new synthetic data that appear real. This chapter explains the principles of GAN. Two examples of GAN, DCGAN and CGAN, are examined and implemented in tf.keras.

⦁ Chapter 5, Improved GANs, covers algorithms that improve the basic GAN. The algorithms address the difficulty in training GANs and improve the perceptual quality of synthetic data. WGAN, LSGAN, and ACGAN are discussed and implemented in tf.keras.

⦁ Chapter 6, Disentangled Representation GANs, discusses how to control the attributes of the synthetic data generated by GANs. The attributes can be controlled if the latent representations are disentangled. Two techniques in disentangling representations, InfoGAN and StackedGAN, are covered and implemented in tf.keras.

⦁ Chapter 7, Cross-Domain GANs, covers a practical application of GAN, translating images from one domain to another, commonly known as cross-domain transfer. CycleGAN, a widely used cross-domain GAN, is discussed and implemented in tf.keras. This chapter demonstrates CycleGAN performing colorization and style transfer.

⦁ Chapter 8, Variational Autoencoders (VAEs), discusses another important topic in DL. Similar to GAN, VAE is a generative model that is used to produce synthetic data. Unlike GAN, VAE focuses on decodable continuous latent space that is suitable for variational inference. VAE and its variations, CVAE and β-VAE, are covered and implemented in tf.keras.

⦁ Chapter 9, Deep Reinforcement Learning, explains the principles of reinforcement learning and Q-learning. Two techniques in implementing Q-learning for discrete action space are presented, Q-table update and Deep Q-Networks (DQNs). Implementation of Q-learning using Python and DQN in tf.keras are demonstrated in OpenAI Gym environments.

⦁ Chapter 10, Policy Gradient Methods, explains how to use neural networks to learn the policy for decision making in reinforcement learning. Four methods are covered and implemented in tf.keras and OpenAI Gym environments, REINFORCE, REINFORCE with Baseline, Actor-Critic, and Advantage Actor-Critic. The example presented in this chapter demonstrates policy gradient methods on a continuous action space.

⦁ Chapter 11, Object Detection, discusses one of the most common applications of computer vision, object detection or identifying and localizing objects in an image. Key concepts of a multi-scale object detection algorithm called SSD are covered and an implementation is built step by step using tf.keras. An example technique for dataset collection and labeling is presented. Afterward, the tf.keras implementation of SSD is trained and evaluated using the dataset.

⦁ Chapter 12, Semantic Segmentation, discusses another common application of computer vision, semantic segmentation or identifying the object class of each pixel in an image. Principles of segmentation are discussed. Then, semantic segmentation is covered in more detail. An example implementation of a semantic segmentation algorithm called FCN is built and evaluated using tf.keras. The same dataset collected in the previous chapter is used but relabeled for semantic segmentation.

⦁ Chapter 13, Unsupervised Learning Using Mutual Information, looks at how DL is not going to advance if it heavily depends on human labels. Unsupervised learning focuses on algorithms that do not require human labels. One effective technique to achieve unsupervised learning is to take advantage of the concept of Mutual Information (MI). By maximizing MI, unsupervised clustering/classification is implemented and evaluated using tf.keras.

작가 소개

▶About the Author
- Rowel Atienza
Rowel Atienza is an Associate Professor at the Electrical and Electronics Engineering Institute of the University of the Philippines, Diliman. He holds the Dado and Maria Banatao Institute Professorial Chair in Artificial Intelligence and received his MEng from the National University of Singapore for his work on an AI-enhanced four-legged robot. He finished his Ph.D. at The Australian National University for his contribution in the field of active gaze tracking for human-robot interaction. His current research work focuses on AI and computer vision.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 모던 소프트웨어 엔지니어링 (데이비드 팔리, 박재호)
  • 요즘 우아한 AI 개발 (우아한형제들)
  • 조코딩의 AI 비트코인 자동 매매 시스템 만들기 (조동근)
  • 러닝 랭체인 (메이오 오신, 누노 캄포스)
  • 개정판 | 혼자 공부하는 머신러닝+딥러닝 (박해선)
  • 웹 접근성 바이블 (이하라 리키야, 고바야시 다이스케)
  • Do it! LLM을 활용한 AI 에이전트 개발 입문 (이성용)
  • 컴퓨터 밑바닥의 비밀 (루 샤오펑, 김진호)
  • 7가지 프로젝트로 배우는 LLM AI 에이전트 개발 (황자, 김진호)
  • 개정4판 | 스위프트 프로그래밍 (야곰)
  • LLM 엔지니어링 (막심 라본, 폴 이우수틴)
  • 멀티패러다임 프로그래밍 (유인동)
  • LLM 서비스 설계와 최적화 (슈레야스 수브라마니암, 김현준)
  • 테스트 너머의 QA 엔지니어링 (김명관)
  • 게임 시나리오 기획자를 위한 안내서 (양정윤)
  • 혼자 공부하는 네트워크 (강민철)
  • 개정판 | <소문난 명강의> 레트로의 유니티 6 게임 프로그래밍 에센스 (이제민)
  • 확산 모델의 수학 (오카노하라 다이스케, 손민규)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전