본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits 상세페이지

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits

A practical guide to implementing supervised and unsupervised machine learning algorithms in Python

  • 관심 0
소장
전자책 정가
23,000원
판매가
23,000원
출간 정보
  • 2020.07.24 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 368 쪽
  • 12.5MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781838823580
ECN
-
Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits

작품 정보

Integrate scikit-learn with various tools such as NumPy, pandas, imbalanced-learn, and scikit-surprise and use it to solve real-world machine learning problems

▶Book Description
Machine learning is applied everywhere, from business to research and academia, while scikit-learn is a versatile library that is popular among machine learning practitioners. This book serves as a practical guide for anyone looking to provide hands-on machine learning solutions with scikit-learn and Python toolkits.

The book begins with an explanation of machine learning concepts and fundamentals, and strikes a balance between theoretical concepts and their applications. Each chapter covers a different set of algorithms, and shows you how to use them to solve real-life problems. You'll also learn about various key supervised and unsupervised machine learning algorithms using practical examples. Whether it is an instance-based learning algorithm, Bayesian estimation, a deep neural network, a tree-based ensemble, or a recommendation system, you'll gain a thorough understanding of its theory and learn when to apply it. As you advance, you'll learn how to deal with unlabeled data and when to use different clustering and anomaly detection algorithms.

By the end of this machine learning book, you'll have learned how to take a data-driven approach to provide end-to-end machine learning solutions. You'll also have discovered how to formulate the problem at hand, prepare required data, and evaluate and deploy models in production.

▶What You Will Learn
⦁Understand when to use supervised, unsupervised, or reinforcement learning algorithms
⦁Find out how to collect and prepare your data for machine learning tasks
⦁Tackle imbalanced data and optimize your algorithm for a bias or variance tradeoff
⦁Apply supervised and unsupervised algorithms to overcome various machine learning challenges
⦁Employ best practices for tuning your algorithm's hyper parameters
⦁Discover how to use neural networks for classification and regression
⦁Build, evaluate, and deploy your machine learning solutions to production

▶Key Features
⦁Delve into machine learning with this comprehensive guide to scikit-learn and scientific Python
⦁Master the art of data-driven problem-solving with hands-on examples
⦁Foster your theoretical and practical knowledge of supervised and unsupervised machine learning algorithms

▶Who This Book Is For
This book is for data scientists, machine learning practitioners, and anyone who wants to learn how machine learning algorithms work and to build different machine learning models using the Python ecosystem. The book will help you take your knowledge of machine learning to the next level by grasping its ins and outs and tailoring it to your needs. Working knowledge of Python and a basic understanding of underlying mathematical and statistical concepts is required.

▶What this book covers
⦁ Chapter 1, Introduction to Machine Learning, will introduce you to the different machine learning paradigms, using examples from industry. You will also learn how to use data to evaluate the models you build.

⦁ Chapter 2, Making Decisions with Trees, will explain how decision trees work and teach you how to use them for classification as well as regression. You will also learn how to derive business rules from the trees you build.

⦁ Chapter 3, Making Decisions with Linear Equations, will introduce you to linear regression. After understanding its modus operandi, we will learn about related models such as ridge, lasso, and logistic regression. This chapter will also pave the way toward understanding neural networks later on in this book.

⦁ Chapter 4, Preparing Your Data, will cover how to deal with missing data using the impute functionality. We will then use scikit-learn, as well as an external library called categoricalencoding, to prepare the categorical data for the algorithms that we are going to use later on in the book.

⦁ Chapter 5, Image Processing with Nearest Neighbors, will explain the k-Nearest Neighbors algorithms and their hyperparameters. We will also learn how to prepare images for the nearest neighbors classifier.

⦁ Chapter 6, Classifying Text Using Naive Bayes, will teach you how to convert textual data into numbers and use machine learning algorithms to classify it. We will also learn about techniques to deal with synonyms and high data dimensionality.

⦁ Chapter 7, Neural Networks – Here Comes the Deep Learning, will dive into how to use neural networks for classification and regression. We will also learn about data scaling since it is a requirement for quicker convergence.

⦁ Chapter 8, Ensembles – When One Model Is Not Enough, will cover how to reduce the bias or variance of algorithms by combining them into an ensemble. We will also learn about the different ensemble methods, from bagging to boosting, and when to use each of them.

⦁ Chapter 9, The Y is as Important as the X, will teach you how to build multilabel classifiers. We will also learn how to enforce dependencies between your model outputs and make a classifier's probabilities more reliable with calibration.

⦁ Chapter 10, Imbalanced Learning – Not Even 1% Win the Lottery, will introduce the use of an imbalanced learning helper library and explore different ways for over- and undersampling. We will also learn how to use the sampling methods with the ensemble models.

⦁ Chapter 11, Clustering – Making Sense of Unlabeled Data, will cover clustering as an unsupervised learning algorithm for making sense of unlabeled data.

⦁ Chapter 12, Anomaly Detection – Finding Outliers in Data, will explore the different types of anomaly detection algorithms.

⦁ Chapter 13, Recommender Systems – Get to Know Their Taste, will teach you how to build a recommendation system and deploy it in production.

작가 소개

▶About the Author
- Tarek Amr
Tarek Amr has 8 years of experience in data science and machine learning. After finishing his postgraduate degree at the University of East Anglia, he worked in a number of startups and scale-up companies in Egypt and the Netherlands. This is his second data-related book. His previous book covered data visualization using D3.js. He enjoys giving talks and writing about different computer science and business concepts and explaining them to a wider audience. He can be reached on Twitter at @gr33ndata. He is happy to respond to all questions related to this book. Feel free to get in touch with him if any parts of the book need clarification or if you would like to discuss any of the concepts here in more detail.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 멀티패러다임 프로그래밍 (유인동)
  • 요즘 우아한 AI 개발 (우아한형제들)
  • MCP 혁신: 클로드로 엑셀, 한글, 휴가 등록부터 결재문서 자동화까지 with python (이호준, 차경림)
  • 조코딩의 AI 비트코인 자동 매매 시스템 만들기 (조동근)
  • 랭체인과 RAG로 배우는 실전 LLM 애플리케이션 개발 (양기빈, 조국일)
  • 랭체인 & 랭그래프로 AI 에이전트 개발하기 (서지영)
  • 플랫폼 엔지니어링 (이언 놀런드, 카미유 푸르니에)
  • 이펙티브 소프트웨어 아키텍처 (올리버 골드만, 최희철)
  • 윌 라슨의 엔지니어링 리더십 (윌 라슨, 임백준)
  • 이펙티브 소프트웨어 설계 (토마스 레렉, 존 스키트)
  • OpenAI, 구글 Gemini, 업스테이지 Solar API를 활용한 실전 LLM 앱 개발 (최용, 조승우)
  • 개정판 | 밑바닥부터 시작하는 딥러닝 1 (사이토 고키, 이복연)
  • 소프트웨어 엔지니어 가이드북 (게르겔리 오로스, 이민석)
  • LLM을 활용한 실전 AI 애플리케이션 개발 (허정준, 정진호)
  • 최고의 프롬프트 엔지니어링 강의 (김진중)
  • 카프카 커넥트 (미카엘 메종, 케이트 스탠리)
  • 개정판 | 개발자 기술 면접 노트 (이남희)
  • 개정판 | 혼자 공부하는 머신러닝+딥러닝 (박해선)
  • 실전! 12가지 프로젝트로 배우는 OpenAI API, 랭체인 완벽 활용법 (김준성, 브라이스 유)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전