본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Artificial Intelligence By Example Second Edition 상세페이지

Artificial Intelligence By Example Second Edition

Acquire advanced AI, machine learning, and deep learning design skills

  • 관심 0
소장
전자책 정가
21,000원
판매가
21,000원
출간 정보
  • 2020.02.28 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 579 쪽
  • 11.5MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781839212819
UCI
-
Artificial Intelligence By Example Second Edition

작품 정보

Understand the fundamentals and develop your own AI solutions in this updated edition packed with many new examples

▶Book Description
AI has the potential to replicate humans in every field. Artificial Intelligence By Example, Second Edition serves as a starting point for you to understand how AI is built, with the help of intriguing and exciting examples.

This book will make you an adaptive thinker and help you apply concepts to real-world scenarios. Using some of the most interesting AI examples, right from computer programs such as a simple chess engine to cognitive chatbots, you will learn how to tackle the machine you are competing with. You will study some of the most advanced machine learning models, understand how to apply AI to blockchain and Internet of Things (IoT), and develop emotional quotient in chatbots using neural networks such as recurrent neural networks (RNNs) and convolutional neural networks (CNNs).

This edition also has new examples for hybrid neural networks, combining reinforcement learning (RL) and deep learning (DL), chained algorithms, combining unsupervised learning with decision trees, random forests, combining DL and genetic algorithms, conversational user interfaces (CUI) for chatbots, neuromorphic computing, and quantum computing.

By the end of this book, you will understand the fundamentals of AI and have worked through a number of examples that will help you develop your AI solutions.

▶What You Will Learn
⦁Apply k-nearest neighbors (KNN) to language translations and explore the opportunities in Google Translate
⦁Understand chained algorithms combining unsupervised learning with decision trees
⦁Solve the XOR problem with feedforward neural networks (FNN) and build its architecture to represent a data flow graph
⦁Learn about meta learning models with hybrid neural networks
⦁Create a chatbot and optimize its emotional intelligence deficiencies with tools such as Small Talk and data logging
⦁Building conversational user interfaces (CUI) for chatbots
⦁Writing genetic algorithms that optimize deep learning neural networks
⦁Build quantum computing circuits

▶Key Features
⦁AI-based examples to guide you in designing and implementing machine intelligence
⦁Build machine intelligence from scratch using artificial intelligence examples
⦁Develop machine intelligence from scratch using real artificial intelligence

▶Who This Book Is For
Developers and those interested in AI, who want to understand the fundamentals of Artificial Intelligence and implement them practically. Prior experience with Python programming and statistical knowledge is essential to make the most out of this book.

▶What this book covers
⦁ Chapter 1, Getting Started with Next-Generation Artificial Intelligence through Reinforcement Learning, covers reinforcement learning through the Bellman equation based on the MDP. A case study describes how to solve a delivery route problem with a human driver and a self-driving vehicle. This chapter shows how to build an MDP from scratch in Python.

⦁ Chapter 2, Building a Reward Matrix – Designing Your Datasets , demonstrates the architecture of neural networks starting with the McCulloch-Pitts neuron. The case study describes how to use a neural network to build the reward matrix used by the Bellman equation in a warehouse environment. The process will be developed in Python using logistic, softmax, and one-hot functions.

⦁ Chapter 3, Machine Intelligence – Evaluation Functions and Numerical Conve rgence, shows how machine evaluation capacities have exceeded human decision-making. The case study describes a chess position and how to apply the results of an AI program to decision-making priorities. An introduction to decision trees in Python shows how to manage decision-making processes.

⦁ Chapter 4, Optimizing Your Solutions with K-Means Clustering, covers a k-means clustering program with Lloyd's algorithm and how to apply it to the optimization of automatic guided vehicles. The k-means clustering program's model will be trained and saved.

⦁ Chapter 5, How to Use Decision Trees to Enhance K-Means Clustering , begins with unsupervised learning with k-means clustering. The output of the k-means clustering algorithm will provide the labels for the supervised decision tree algorithm. Random forests will be introduced.

⦁ Chapter 6, Innovating AI with Google Translate, explains the difference between a revolutionary innovation and a disruptive innovation. Google Translate will be described and enhanced with an innovative k-nearest neighbors-based Python program.

⦁ Chapter 7, Optimizing Blockchains with Naive Bayes, is about mining blockchains and describes how blockchains function. We use naive Bayes to optimize the blocks of supply chain management (SCM) blockchains by predicting transactions to anticipate storage levels.

⦁ Chapter 8, Solving the XOR Problem with a Feedforward Neural Network , is about building a feedforward neural network (FNN) from scratch to solve the XOR linear separability problem. The business case describes how to group orders for a factory.

⦁ Chapter 9, Abstract Image Classification with Convolutional Neural Networks (CNNs), describes CNN in detail: kernels, shapes, activation functions, pooling, flattening, and dense layers. The case study illustrates the use of a CNN using a webcam on a conveyor belt in a food-processing company.

⦁ Chapter 10, Conceptual Representation Learning, explains conceptual representation learning (CRL), an innovative way to solve production flows with a CNN transformed into a CRL metamodel (CRLMM). The case study shows how to use a CRLMM for transfer and domain learning, extending the model to other applications.

⦁ Chapter 11, Combining Reinforcement Learning and Deep Learning, combines a CNN with an MDP to build a solution for automatic planning and scheduling with an optimizer with a rule-based system.
The solution is applied to apparel manufacturing showing how to apply AI to real-life systems.

⦁ Chapter 12, AI and the Internet of Things (IoT), explores a support vector machine (SVM) assembled with a CNN. The case study shows how self-driving cars can find an available parking space automatically.

⦁ Chapter 13, Visualizing Networks with TensorFlow 2.x and TensorBoard, extracts information of each layer of a CNN and displays the intermediate steps taken by the neural network. The output of each layer contains images of the transformations applied.

⦁ Chapter 14, Preparing the Input of Chatbots with Restricted Boltzmann Machi nes (RBM) and Principal Component Analysis (PCA), explains how to produce valuable information using an RBM and a PCA to transform raw data into chatbot-input data.

⦁ Chapter 15, Setting Up a Cognitive NLP UI/CUI Chatbot, describes how to build a Google Dialogflow chatbot from scratch using the information p rovided by an RBM and a PCA algorithm. The chatbot will contain entities, intents, and meaningful responses.

⦁ Chapter 16, Improving the Emotional Intelligence Deficiencies of Chatbots, explains the limits of a chatbot when dealing with human emotions. The Emotion options of Dialogflow will be activated along with Small Talk to make the chatbot friendlier.

⦁ Chapter 17, Genetic Algorithms in Hybrid Neural Networks, enters our chromosomes, finds our genes, and helps you understand how our reproduction p rocess works. From there, it is shown how to implement an evolutionary algorithm in Python, a genetic algorithm (GA). A hybrid neural network will show how to optimize a neural network with a GA.

⦁ Chapter 18, Neuromorphic Computing, describes what neuromorphic computing is and then explores Nengo, a unique neuromorphic framework with solid tutorials and documentation. This neuromorphic overview will take you into the wonderful power of our brain structures to solve complex problems.

⦁ Chapter 19, Quantum Computing, will show quantum computers are superior to classical computers, what a quantum bit is, how to use it, and how to build quantum circuits. An introduction to quantum gates and example programs will bring you into the futuristic world of quantum mechanics.

⦁ Appendix, Answers to the Questions, provides answers to the questions listed in the Questions section in all the chapters.

작가 소개

▶About the Author
- Denis Rothman
Denis Rothman graduated from Sorbonne University and Paris-Diderot University, writing one of the very first word2matrix embedding solutions. Denis Rothman is the author of three cutting-edge AI solutions: one of the first AI cognitive chatbots more than 30 years ago; a profit-orientated AI resource optimizing system; and an AI APS (Advanced Planning and Scheduling) solution based on cognitive patterns that is now used worldwide in aerospace, rail, energy, apparel and many other fields. Designed initially as a cognitive bot for IBM, it then went on to become a robust APS solution used to this day.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • AI 엔지니어링 (칩 후옌, 변성윤)
  • 요즘 개발자를 위한 시스템 설계 수업 (디렌드라 신하 , 테자스 초프라)
  • 밑바닥부터 만들면서 배우는 LLM (세바스찬 라시카, 박해선)
  • 0과 1 사이 (가와타 아키라, 고이케 유키)
  • 요즘 바이브 코딩 클로드 코드 완벽 가이드 (최지호(코드팩토리))
  • 실무로 통하는 LLM 애플리케이션 설계 (수하스 파이, 박조은)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 한 걸음 앞선 개발자가 지금 꼭 알아야 할 클로드 코드 (조훈, 정찬훈)
  • 소문난 명강의 : 크리핵티브의 한 권으로 끝내는 웹 해킹 바이블 (하동민)
  • 헤드 퍼스트 소프트웨어 아키텍처 (라주 간디, 마크 리처드)
  • 데이터 삽질 끝에 UX가 보였다 (이미진(란란))
  • SQLite, MCP, 바이브 코딩을 활용한 데이터 분석과 업무 자동화 (박찬규, 윤가희)
  • 실전! 프로젝트로 배우는 딥러닝 컴퓨터비전 (김혜진, 왕진영)
  • 개정판 | 프롬프트 엔지니어링 (반병현)
  • 요즘 바이브 코딩 커서 AI 30가지 프로그램 만들기 (박현규)
  • 데이터 중심 애플리케이션 설계 (마틴 클레프만, 정재부)
  • 개정판 | 모두의 파이썬 (개정 2판) (이승찬)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 개정판 | 개발자 기술 면접 노트 (이남희)
  • FastAPI로 배우는 백엔드 프로그래밍 with 클린 아키텍처 (한용재)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전