본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Hands-On Graph Analytics with Neo4j 상세페이지

Hands-On Graph Analytics with Neo4j

Perform graph processing and visualization techniques using connected data across your enterprise

  • 관심 0
소장
전자책 정가
24,000원
판매가
24,000원
출간 정보
  • 2020.08.21 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 496 쪽
  • 28.2MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781839215667
ECN
-
Hands-On Graph Analytics with Neo4j

작품 정보

Discover how to use Neo4j to identify relationships within complex and large graph datasets using graph modeling, graph algorithms, and machine learning

▶Book Description
Neo4j is a graph database that includes plugins to run complex graph algorithms.

The book starts with an introduction to the basics of graph analytics, the Cypher query language, and graph architecture components, and helps you to understand why enterprises have started to adopt graph analytics within their organizations. You'll find out how to implement Neo4j algorithms and techniques and explore various graph analytics methods to reveal complex relationships in your data. You'll be able to implement graph analytics catering to different domains such as fraud detection, graph-based search, recommendation systems, social networking, and data management. You'll also learn how to store data in graph databases and extract valuable insights from it. As you become well-versed with the techniques, you'll discover graph machine learning in order to address simple to complex challenges using Neo4j. You will also understand how to use graph data in a machine learning model in order to make predictions based on your data. Finally, you'll get to grips with structuring a web application for production using Neo4j.

By the end of this book, you'll not only be able to harness the power of graphs to handle a broad range of problem areas, but you'll also have learned how to use Neo4j efficiently to identify complex relationships in your data.

▶What You Will Learn
- Become well-versed with Neo4j graph database building blocks, nodes, and relationships
- Discover how to create, update, and delete nodes and relationships using Cypher querying
- Use graphs to improve web search and recommendations
- Understand graph algorithms such as pathfinding, spatial search, centrality, and community detection
- Find out different steps to integrate graphs in a normal machine learning pipeline
- Formulate a link prediction problem in the context of machine learning
- Implement graph embedding algorithms such as DeepWalk, and use them in Neo4j graphs

▶Key Features
- Get up and running with graph analytics with the help of real-world examples
- Explore various use cases such as fraud detection, graph-based search, and recommendation systems
- Get to grips with the Graph Data Science library with the help of examples, and use Neo4j in the cloud for effective application scaling

▶Who This Book Is For
This book is for data analysts, business analysts, graph analysts, and database developers looking to store and process graph data to reveal key data insights. This book will also appeal to data scientists who want to build intelligent graph applications catering to different domains. Some experience with Neo4j is required.

▶What this book covers
- Chapter 1, Graph Databases, provides a review of graph database concepts, starting from graph theory and important definitions to the node and relationship model of Neo4j.

- Chapter 2, The Cypher Query Language, covers the basics of Cypher, the query language used by Neo4j, which will be used throughout this book for data import and pattern matching. APOC utilities for data import are also studied. In this chapter, we will start building the graph of Neo4j contributors on GitHub, which will be used elsewhere in this book.

- Chapter 3, Empowering Your Business with Pure Cypher, explains how to build a knowledge graph from structured and unstructured data (using NLP) and start applying it from graphbased search or recommendation engines. We will use the graph of Neo4j contributors on GitHub and extend this thanks to natural language analysis and external publicly available knowledge graphs (namely, Wikidata).

- Chapter 4, The Graph Data Science Library and Path Finding, explains the main principles of the graph data science plugin for Neo4j and uses our first algorithms with the shortest path-finding applications.

- Chapter 5, Spatial Data, explains how, thanks to the Neo4j Spatial plugin, we will be able to store and query spatial data (points, lines, and polygons). Coupling Neo4j Spatial with the graph data science plugin, we will create a routing engine in Manhattan, New York.

- Chapter 6, Node Importance, covers the different centrality algorithms, depending on how you define node importance, their applications, and usage from the GDS.

- Chapter 7, Community Detection and Similarity Measures, covers the different algorithms to detect structures in a graph and how to visualize them using JavaScript libraries.

- Chapter 8, Using Graph-Based Features in Machine Learning, explains how, starting from a flat CSV file, we will build a full machine learning project, reviewing the different steps required to build a predictive pipeline (feature engineering, model training, and model evaluation). We will then transform our flat CSV data to a graph using extra knowledge of our data and learn how graph algorithms can enhance the performance of a classification task.

- Chapter 9, Predicting Relationships, explains how, in a time-evolving graph, we will formulate a link prediction problem as a machine learning problem with a training and test set.

- Chapter 10, Graph Embedding – from Graphs to Matrices, explains how algorithms can automatically learn features for each node in a graph. Using an analogy with word embedding, we will learn how the DeepWalk algorithm works. We will then go even deeper and learn about graph neural networks and their use cases. Applications will be given using both Python and some dependencies and the GDS implementation of node2vec and GraphSAGE.

- Chapter 11, Using Neo4j in Your Web Application, covers how, in order to use Neo4j and the tools we have studied in the previous chapter in a live application, we will create a web application using either Python and its popular Flask framework, or JavaScript and a GraphQL API.

- Chapter 12, Neo4j at Scale, provides an overview of the possibilities offered by the GDS and Neo4j 4 in order to manage big data.

작가 소개

▶About the Author
- Estelle Scifo
Estelle Scifo possesses over 7 years' experience as a data scientist, after receiving her PhD from the Laboratoire de l'Accelerateur Lineaire, Orsay (affiliated to CERN in Geneva). As a Neo4j certified professional, she uses graph databases on a daily basis and takes full advantage of its features to build efficient machine learning models out of this data. In addition, she is also a data science mentor to guide newcomers into the field. Her domain expertise and deep insight into the perspective of the beginner's needs make her an excellent teacher.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 요즘 우아한 AI 개발 (우아한형제들)
  • 조코딩의 AI 비트코인 자동 매매 시스템 만들기 (조동근)
  • 멀티패러다임 프로그래밍 (유인동)
  • 최고의 프롬프트 엔지니어링 강의 (김진중)
  • 전략적 모놀리스와 마이크로서비스 (반 버논, 토마스 야스쿨라)
  • 랭체인과 RAG로 배우는 실전 LLM 애플리케이션 개발 (양기빈, 조국일)
  • 윌 라슨의 엔지니어링 리더십 (윌 라슨, 임백준)
  • OpenAI, 구글 Gemini, 업스테이지 Solar API를 활용한 실전 LLM 앱 개발 (최용, 조승우)
  • 개정판 | <소문난 명강의> 레트로의 유니티 6 게임 프로그래밍 에센스 (이제민)
  • 소프트웨어 엔지니어 가이드북 (게르겔리 오로스, 이민석)
  • 육각형 개발자 (최범균)
  • 개발자를 위한 쉬운 쿠버네티스 (윌리엄 데니스, 이준)
  • LLM 엔지니어링 (막심 라본, 폴 이우수틴)
  • 개정판 | 쉽고 빠르게 익히는 실전 LLM (시난 오즈데미르, 신병훈)
  • CI/CD & GitOps 실전가이드 :argoCD vs fluxCD (commaum)
  • 이지 러스트 (데이브 매클라우드, 이지호)
  • 혼자 공부하는 네트워크 (강민철)
  • 그림으로 이해하는 서버 구조와 기술 (요코타 카즈키, 엔도 유키)
  • 코딩 테스트 합격자 되기(자바 편) (김희성)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전