본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Mastering Python Networking Third Edition 상세페이지

Mastering Python Networking Third Edition

Your one-stop solution to using Python for network automation, programmability, and DevOps

  • 관심 0
소장
전자책 정가
26,000원
판매가
26,000원
출간 정보
  • 2020.01.30 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 577 쪽
  • 15.0MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781839218675
UCI
-
Mastering Python Networking Third Edition

작품 정보

New edition of the bestselling guide to mastering Python Networking, updated to Python 3 and including the latest on network data analysis, Cloud Networking, Ansible 2.8, and new libraries

▶Book Description
Networks in your infrastructure set the foundation for how your application can be deployed, maintained, and serviced. Python is the ideal language for network engineers to explore tools that were previously available to systems engineers and application developers. In Mastering Python Networking, Third edition, you'll embark on a Python-based journey to transition from traditional network engineers to network developers ready for the next-generation of networks.

This new edition is completely revised and updated to work with Python 3. In addition to new chapters on network data analysis with ELK stack (Elasticsearch, Logstash, Kibana, and Beats) and Azure Cloud Networking, it includes updates on using newer libraries such as pyATS and Nornir, as well as Ansible 2.8. Each chapter is updated with the latest libraries with working examples to ensure compatibility and understanding of the concepts.

Starting with a basic overview of Python, the book teaches you how it can interact with both legacy and API-enabled network devices. You will learn to leverage high-level Python packages and frameworks to perform network automation tasks, monitoring, management, and enhanced network security followed by Azure and AWS Cloud networking. Finally, you will use Jenkins for continuous integration as well as testing tools to verify your network.

▶What You Will Learn
-Use Python libraries to interact with your network
-Integrate Ansible 2.8 using Python to control Cisco, Juniper, and Arista network devices
-Leverage existing Flask web frameworks to construct high-level APIs
-Learn how to build virtual networks in the AWS & Azure Cloud
-Learn how to use Elastic Stack for network data analysis
-Understand how Jenkins can be used to automatically deploy changes in your network
-Use PyTest and Unittest for Test-Driven Network Development in networking engineering with Python

▶Key Features
-Explore the power of Python libraries to tackle difficult network problems efficiently and effectively, including pyATS, Nornir, and Ansible 2.8
-Use Python and Ansible for DevOps, network device automation, DevOps, and software-defined networking
-Become an expert in implementing advanced network-related tasks with Python 3

▶Who This Book Is For
Mastering Python Networking, Third edition is for network engineers, developers, and SREs who want to use Python for network automation, programmability, and data analysis. Basic familiarity with Python programming and networking-related concepts such as Transmission Control Protocol/Internet Protocol (TCP/IP) will be useful.

▶What this book covers
- Chapter 1, Review of TCP/IP Protocol Suite and Python, reviews the fundamental technologies that make up internet communication today, from the OSI and clientserver model to the TCP, UDP, and IP protocol suites. The chapter will review the basics of the Python language such as types, operators, loops, functions, and packages.

- Chapter 2, Low-Level Network Device Interactions, uses practical examples to illustrate how to use Python to execute commands on a network device. It will also discuss the challenges of having a CLI-only interface in automation. The chapter will use the Pexpect, Paramiko, Netmiko, and Nornir libraries for the examples.

- Chapter 3, APIs and Intent-Driven Networking, discusses the newer network devices that support Application Programming Interfaces (APIs) and other high-level interaction methods. It also illustrates tools that allow the abstraction of low-level tasks while focusing on the intent of the network engineers. A discussion about and examples of Cisco NX-API, Meraki, Juniper PyEZ, Arista Pyeapi, and Vyatta VyOS will appear in the chapter.

- Chapter 4, The Python Automation Framework – Ansible Basics, discusses the basics of Ansible, an open source, Python-based automation framework. Ansible moves one step further from APIs and focuses on declarative task intent. In this chapter, we will cover the advantages of using Ansible and its high-level architecture, and see some practical examples of Ansible with Cisco, Juniper, and Arista devices.

- Chapter 5, The Python Automation Framework – Beyond Basics, builds on the knowledge in the previous chapter and covers the more advanced Ansible topics. We will cover conditionals, loops, templates, variables, Ansible Vault, and roles. It will also cover the basics of writing custom modules.

- Chapter 6, Network Security with Python, introduces several Python tools to help you secure your network. It will discuss using Scapy for security testing, using Ansible to quickly implement access lists, and using Python for network forensic analysis.

- Chapter 7, Network Monitoring with Python – Part 1, covers monitoring the network using various tools. The chapter contains some examples using SNMP and PySNMP for queries to obtain device information. Matplotlib and Pygal examples will be shown for graphing the results. The chapter will end with a Cacti example using a Python script as an input source.

- Chapter 8, Network Monitoring with Python – Part 2, covers more network monitoring tools. The chapter will start with using Graphviz to graph the network from LLDP information. We will move to use examples with push-based network monitoring using Netflow and other technologies. We will use Python to decode flow packets and ntop to visualize the results. An overview of Elasticsearch and how it can be used for network monitoring will also be covered.

- Chapter 9, Building Network Web Services with Python, shows you how to use the Python Flask web framework to create our own API for network automation. The network API offers benefits such as abstracting the requester from network details, consolidating and customizing operations, and providing better security by limiting the exposure of available operations.

- Chapter 10, AWS Cloud Networking, shows how we can use AWS to build a virtual network that is functional and resilient. We will cover virtual private cloud technologies such as CloudFormation, VPC routing tables, access lists, Elastic IP, NAT gateways, Direct Connect, and other related topics.

- Chapter 11, Azure Cloud Networking, covers the network services by Azure and how to build network services with the service. We will discuss Azure VNet, Express Route and VPN, Azure network load balancers, and other related network services.

- Chapter 12, Network Data Analysis with Elastic Stack, shows how we can use Elastic Stack as a set of tightly integrated tools to help us analyze and monitor our network. We will cover areas from installation, configuration, data import with Logstash and Beats, and searching data using Elasticsearch, to visualization with Kibana.

- Chapter 13, Working with Git, is where we will illustrate how we can leverage Git for collaboration and code version control. Practical examples of using Git for network operations will be used in this chapter.

- Chapter 14, Continuous Integration with Jenkins, uses Jenkins to automatically create operations pipelines that can save us time and increase reliability.

- Chapter 15, Test-Driven Development for Networks, explains how to use Python's unittest and pytest to create simple tests to verify our code. We will also see examples of writing tests for our network to verify reachability, network latency, security, and network transactions. We will also see how we can integrate the tests into continuous integration tools, such as Jenkins.

작가 소개

▶About the Author
- Eric Chou
Eric Chou is a seasoned technologist with over 20 years of experience. He has worked on some of the largest networks in the industry while working at Amazon, Azure, and other Fortune 500 companies. Eric is passionate about network automation, Python, and helping companies build better security postures.

In addition to being the author of Mastering Python Networking (Packt), he is also the co-author of Distributed Denial of Service (DDoS): Practical Detection and Defense, (O'Reilly Media).

Eric is also the primary inventor for two U.S. patents in IP telephony. He shares his deep interest in technology through his books, classes, and blog, and contributes to some of the popular Python open source projects.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 요즘 바이브 코딩 클로드 코드 완벽 가이드 (최지호(코드팩토리))
  • 바이브 코딩 너머 개발자 생존법 (애디 오스마니, 강민혁)
  • 그림으로 이해하는 챗GPT 구조와 기술 (나카타니 슈요, 박광수)
  • 요즘 개발자를 위한 시스템 설계 수업 (디렌드라 신하 , 테자스 초프라)
  • 밑바닥부터 만들면서 배우는 LLM (세바스찬 라시카, 박해선)
  • 요즘 당근 AI 개발 (당근 팀)
  • AI 엔지니어링 (칩 후옌, 변성윤)
  • 스프링 부트 3와 스프링 클라우드를 활용한 마이크로서비스 구축 (마그누스 라르손, 트랜스메이트)
  • PyTorch로 배우는 딥러닝과 생성형 AI (박유성)
  • 개정판 | 혼자 공부하는 머신러닝+딥러닝 (박해선)
  • 혼자 공부하는 컴퓨터 구조+운영체제 (강민철)
  • AI 에이전트 생태계 (이주환)
  • AWS 잘하는 개발자 되기 (김재욱)
  • 0과 1 사이 (가와타 아키라, 고이케 유키)
  • AI 프로덕트 기획과 운영 (마릴리 니카, 오성근)
  • n8n 첫걸음 업무 자동화 부터 AI 챗봇 까지 (문세환)
  • 딥러닝 제대로 이해하기 (사이먼 J. D. 프린스, 고연이)
  • 데이터 삽질 끝에 UX가 보였다 (이미진(란란))
  • 개정판 | 린 스타트업 (애시 모리아, 권혜정)
  • 객체지향의 사실과 오해 (조영호)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전