Learn to design, implement, and secure your IoT infrastructure. Revised and expanded for edge computing.
▶Book Description
Industries are embracing IoT technologies to improve operational expenses, product life, and people's well-being. An architectural guide is needed if you want to traverse the spectrum of technologies needed to build a successful IoT system, whether that's a single device or millions of IoT devices.
IoT and Edge Computing for Architects, Second Edition encompasses the entire spectrum of IoT solutions, from IoT sensors to the cloud. It examines modern sensor systems, focusing on their power and functionality. It also looks at communication theory, paying close attention to near-range PAN, including the new Bluetooth® 5.0 specification and mesh networks. Then, the book explores IP-based communication in LAN and WAN, including 802.11ah, 5G LTE cellular, Sigfox, and LoRaWAN. It also explains edge computing, routing and gateways, and their role in fog computing, as well as the messaging protocols of MQTT 5.0 and CoAP.
With the data now in internet form, you'll get an understanding of cloud and fog architectures, including the OpenFog standards. The book wraps up the analytics portion with the application of statistical analysis, complex event processing, and deep learning models. The book then concludes by providing a holistic view of IoT security, cryptography, and shell security in addition to software-defined perimeters and blockchains.
▶What You Will Learn
-Understand the role and scope of architecting a successful IoT deployment
-Scan the landscape of IoT technologies, from sensors to the cloud and more
-See the trade-offs in choices of protocols and communications in IoT deployments
-Become familiar with the terminology needed to work in the IoT space
-Broaden your skills in the multiple engineering domains necessary for the IoT architect
-Implement best practices to ensure reliability, scalability, and security in your IoT infrastructure
▶Key Features
-Build a complete IoT system that's the best fit for your organization
-Learn about different concepts, tech, and trade-offs in the IoT architectural stack
-Understand the theory and implementation of each element that comprises IoT design
▶Who This Book Is For
This book is for architects, system designers, technologists, and technology managers who want to understand the IoT ecosphere, technologies, and trade-offs, and develop a 50,000-foot view of IoT architecture. An understanding of the architectural side of IoT is necessary.
▶What this book covers
- Chapter 1, IoT and Edge Computing Definition and Use Cases. We begin this book with an overall understanding of the IoT and edge market and separate hype from reality. We define IoT and edge computing and then uncover various use cases for enterprise, commercial, and industrial IoT solutions. We end the chapter with a case study to provide a full system architectural understanding and breakdown of a typical IoT system, from hardware to software to cloud.
- Chapter 2, IoT Architecture and Core IoT Modules. This chapter provides a high-level view and the breadth of the components and interconnects required to build an IoT or edge system. It will illustrate how the various components are interconnected and what roles they play. Additionally, this chapter will uncover how IoT deployments should be modeled from a value and monetization point of view.
- Chapter 3, Sensors, Endpoints, and Power Systems. Data begins its journey in IoT and edge computing at the sensors and physical devices. Here, we teach the various types of sensors and the physics that govern their abilities. We will show how sensors capture data and images and how they are powered when constant power sources are not available.
- Chapter 4, Communications and Information Theory. To understand many of the constraints and capabilities of wireless communication, we begin with the theory of communication and wireless radio signaling. We explore concepts such as path loss, RF interference, the Shannon-Hartley theorem, and bit-rate limits. We also look at RF spectrum governance and distribution.
- Chapter 5, Non-IP Based WPAN. Personal area networks include devices and systems that are near-range and have short distances between transmitters and receivers. This chapter goes into the breadth and depth of various protocols such as Bluetooth 5.1, Bluetooth beaconing, direction-finding technologies, and Bluetooth 5.0 mesh networking. We also explore other 802.15.4 protocols such as Zigbee and end with a treatment of Z-Wave.
- Chapter 6, IP-Based WPAN and WLAN. This chapter explores the use of TCP/IPbased communication for near-range and long-range communication. We explore architectures such as 6LoWPAN, Thread, and various 802.11 Wi-Fi protocols such as 802.11ac, 802.11p, and 802.11ah.
- Chapter 7, Long-Range Communication Systems and Protocols (WAN). Long-range communication is a prerequisite for moving data from the remote edge to where data centers, customers, and consumers are located. This chapter presents a thorough knowledge of long-range protocols, including the 4G LTE cellular and the new 5G cellular standards. We also explore alternative long-rang technologies such as CBRS, LoRa, Sigfox, and Multefire. We dive deep into how the technologies work and the features they offer in building a system.
- Chapter 8, Edge Computing. This chapter analyzes the hardware and software components needed to build edge-level computing infrastructures. This includes a deep understanding of hardware resources: processor architecture, memory, storage, physical enclosures, environmental hardening, and interconnects. It also examines software frameworks, operating systems, and middleware. Additionally, we study the use of virtualization and containers for edge management (including examples of Microsoft Azure IoT Edge).
- Chapter 9, Edge Routing and Networking. A common use of an edge system is to provide gateway, routing, and network security functions. This chapter teaches the methods of PAN-to-WAN bridging, cellular gateway functions, routing and traffic shaping, as well as security aspects such as software-defined networking and VPNs.
- Chapter 10, Edge to Cloud Protocols. This chapter explores the various methods and features of edge to cloud protocols over wide area networks such as MQTT 5, CoAP, AMQP, and HTTP as standard methods for data transport.
- Chapter 11, Cloud and Fog Topologies. There are many ways to architect and partition a problem between cloud systems and edge systems. This chapter presents the reader with various edge frameworks such as EdgeX and OpenFog, as well as lambda architectures, to build a more robust system.
- Chapter 12, Data Analytics and Machine Learning in the Cloud and Edge. This chapter provides the architect with an understanding of how to extract meaningful data from sensors and IoT systems. Data without understanding is useless. Here, we explore edge and cloud-based analytics using rules engines, statistical analysis, and various artificial intelligence and machine learning techniques. We explore where the correct analytics apply to the problem and dive deep into the mechanics of these tools.
- Chapter 13, IoT and Edge Security. Security is paramount to a robust enterprise and industrial IoT and edge solution. We examine security from a holistic point of view in this chapter. We look at physical, network, and data security from sensor to cloud.
- Chapter 14, Consortiums and Communities. Industry consortiums and professional societies provide many of the standards and guidelines that are necessary to bridge IoT and edge systems together. This chapter captures many relevant industry groups to consider following and joining when designing a system. We also present a list of recommended and commercially deployed sensor, hardware, and software systems that have proven to meet the requirements of commercial, enterprise, and industrial IoT.