본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Hands-On Gradient Boosting with XGBoost and scikit-learn 상세페이지

Hands-On Gradient Boosting with XGBoost and scikit-learn

Perform accessible machine learning and extreme gradient boosting with Python

  • 관심 0
소장
전자책 정가
22,000원
판매가
22,000원
출간 정보
  • 2020.10.16 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 311 쪽
  • 4.9MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781839213809
ECN
-
Hands-On Gradient Boosting with XGBoost and scikit-learn

작품 정보

Get to grips with building robust XGBoost models using Python and scikit-learn for deployment

▶What You Will Learn
-Build gradient boosting models from scratch
-Develop XGBoost regressors and classifiers with accuracy and speed
-Analyze variance and bias in terms of fine-tuning XGBoost hyperparameters
-Automatically correct missing values and scale imbalanced data
-Apply alternative base learners like dart, linear models, and XGBoost random forests
-Customize transformers and pipelines to deploy XGBoost models
-Build non-correlated ensembles and stack XGBoost models to increase accuracy

▶Key Features
-Get up and running with machine learning and understand how to boost models with XGBoost in no time
-Build real-world machine learning pipelines and fine-tune hyperparameters to achieve optimal results
-Discover tips and tricks and gain innovative insights from XGBoost Kaggle winners

▶Who This Book Is For
This book is for data science professionals and enthusiasts, data analysts, and developers who want to build fast and accurate machine learning models that scale with big data. Proficiency in Python, along with a basic understanding of linear algebra, will help you to get the most out of this book.

▶What this book covers
- Chapter 1, Machine Learning Landscape, presents XGBoost within the general context of machine learning by introducing linear regression and logistic regression before comparing results with XGBoost. pandas is introduced to preprocess raw data for machine learning by converting categorical columns and clearing null values in a variety of ways.

- Chapter 2, Decision Trees in Depth, presents a detailed examination of decision tree hyperparameters that are used by XGBoost, along with a graphical and statistical analysis of variance and bias that highlights the importance of overfitting, a theme touched on throughout the book.

- Chapter 3, Bagging with Random Forests, presents a general survey of random forests as an XGBoost competitor with a focus on bagging. Additional XGBoost hyperparameters shared with random forests such as n_esimtators and subsample are thoroughly covered.

- Chapter 4, From Gradient Boosting to XGBoost, covers boosting fundamentals, building a booster from scratch in scikit-learn, fine-tuning new XGBoost hyperparameters such as eta, and comparing runtimes between gradient boosting and XGBoost to highlight XGBoost's impressive speed.

- Chapter 5, XGBoost Unveiled, analyzes the mathematical derivations of XGBoost algorithms and features a historically relevant case study featuring XGBoost's role as the winning model in the Higgs Boson Kaggle Competition. Standard XGBoost parameters are discussed, base models are built, and the original Python API is covered.

- Chapter 6, XGBoost Hyperparameters, covers all essential XGBoost hyperparameters, summarizes previous tree ensemble hyperparameters, and uses original grid search functions to fine-tune XGBoost models to optimize scores.

- Chapter 7, Discovering Exoplanets with XGBoost, gives you the opportunity to discover exoplanets with XGBoost in a top-to-bottom case study. The pitfalls of imbalanced datasets are analyzed with the confusion matrix and classification report leading to different scoring metrics and the important XGBoost hyperparameter scale_pos_weight.

- Chapter 8, XGBoost Alternative Base Learners, covers the full range of XGBoost boosters including gbtree, dart, and gblinear for regression and classification. Random forests are presented as base learners, and as XGBoost alternative models with the new XGBRFRegressor and XGBRFClassifier classes.

- Chapter 9, XGBoost Kaggle Masters, presents tips and tricks that XGBoost Kaggle winners have used to win competitions such as advanced feature engineering, building non-correlated machine ensembles, and stacking.

- Chapter 10, XGBoost Model Deployment, transforms raw data into XGBoost machine learning predictions through the use of customized transformers to handle mixed data and machine learning pipelines to make predictions on incoming data with a fine-tuned XGBoost model.

작가 소개

▶About the Author
- Corey Wade
Corey Wade, M.S. Mathematics, M.F.A. Writing and Consciousness, is the founder and director of Berkeley Coding Academy, where he teaches machine learning and AI to teens from all over the world. Additionally, Corey chairs the Math Department at the Independent Study Program of Berkeley High School, where he teaches programming and advanced math. His additional experience includes teaching natural language processing with Hello World, developing data science curricula with Pathstream, and publishing original statistics (3NG) and machine learning articles with Towards Data Science, Springboard, and Medium. Corey is co-author of the Python Workshop, also published by Packt.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 윌 라슨의 엔지니어링 리더십 (윌 라슨, 임백준)
  • 이펙티브 소프트웨어 설계 (토마스 레렉, 존 스키트)
  • MCP 혁신: 클로드로 엑셀, 한글, 휴가 등록부터 결재문서 자동화까지 with python (이호준, 차경림)
  • 랭체인과 RAG로 배우는 실전 LLM 애플리케이션 개발 (양기빈, 조국일)
  • 플랫폼 엔지니어링 (이언 놀런드, 카미유 푸르니에)
  • LLM 서비스 설계와 최적화 (슈레야스 수브라마니암, 김현준)
  • 이지 러스트 (데이브 매클라우드, 이지호)
  • 개정판 | 밑바닥부터 시작하는 딥러닝 1 (사이토 고키, 이복연)
  • 랭체인 & 랭그래프로 AI 에이전트 개발하기 (서지영)
  • 최고의 프롬프트 엔지니어링 강의 (김진중)
  • 생성형 AI, AI STUDIOS로 인공지능 영상 제작 더 쉽고 더 빠르게 (장세영, 안창현)
  • 퀀트 개발자의 알아야 할 기본 상식 (씨익북스 편집부)
  • 한 권으로 끝내는 실전 LLM 파인튜닝 (강다솔)
  • 켄트 벡의 Tidy First? (켄트 벡, 안영회)
  • 우아한 타입스크립트 with 리액트 (우아한형제들 웹프론트개발그룹, 김민태)
  • 개정판|혼자 공부하는 파이썬 (윤인성)
  • Real MySQL 8.0 (1권) (백은빈, 이성욱)
  • 머신 러닝 Q & AI (세바스찬 라시카, 박해선)
  • 이펙티브 소프트웨어 아키텍처 (올리버 골드만, 최희철)
  • 개정판 | 리액트 네이티브 (온개발팀)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전