본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Python Data Cleaning Cookbook 상세페이지

Python Data Cleaning Cookbook

Modern techniques and Python tools to detect and remove dirty data and extract key insights

  • 관심 0
소장
전자책 정가
29,000원
판매가
29,000원
출간 정보
  • 2020.12.11 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 437 쪽
  • 4.1MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781800564596
ECN
-
Python Data Cleaning Cookbook

작품 정보

Discover how to describe your data in detail, identify data issues, and find out how to solve them using commonly used techniques and tips and tricks

▶Book Description
Getting clean data to reveal insights is essential, as directly jumping into data analysis without proper data cleaning may lead to incorrect results. This book shows you tools and techniques that you can apply to clean and handle data with Python. You'll begin by getting familiar with the shape of data by using practices that can be deployed routinely with most data sources. Then, the book teaches you how to manipulate data to get it into a useful form. You'll also learn how to filter and summarize data to gain insights and better understand what makes sense and what does not, along with discovering how to operate on data to address the issues you've identified. Moving on, you'll perform key tasks, such as handling missing values, validating errors, removing duplicate data, monitoring high volumes of data, and handling outliers and invalid dates. Next, you'll cover recipes on using supervised learning and Naive Bayes analysis to identify unexpected values and classification errors, and generate visualizations for exploratory data analysis (EDA) to visualize unexpected values. Finally, you'll build functions and classes that you can reuse without modification when you have new data.

By the end of this Python book, you'll be equipped with all the key skills that you need to clean data and diagnose problems within it.

▶What You Will Learn
-Find out how to read and analyze data from a variety of sources
-Produce summaries of the attributes of data frames, columns, and rows
-Filter data and select columns of interest that satisfy given criteria
-Address messy data issues, including working with dates and missing values
-Improve your productivity in Python pandas by using method chaining
-Use visualizations to gain additional insights and identify potential data issues
-Enhance your ability to learn what is going on in your data
-Build user-defined functions and classes to automate data cleaning

▶Key Features
-Get well-versed with various data cleaning techniques to reveal key insights
-Manipulate data of different complexities to shape them into the right form as per your business needs
-Clean, monitor, and validate large data volumes to diagnose problems before moving on to data analysis

▶Who This Book Is For
This book is for anyone looking for ways to handle messy, duplicate, and poor data using different Python tools and techniques. The book takes a recipe-based approach to help you to learn how to clean and manage data. Working knowledge of Python programming is all you need to get the most out of the book.

▶What this book covers
- Chapter 1, Anticipating Data Cleaning Issues when Importing Tabular Data into pandas, explores tools for loading CSV files, Excel files, relational database tables, SAS, SPSS, and Stata files, and R files into pandas DataFrames.

- Chapter 2, Anticipating Data Cleaning Issues when Importing HTML and JSON into pandas, discusses techniques for reading and normalizing JSON data, and for web scraping.

- Chapter 3, Taking the Measure of Your Data, introduces common techniques for navigating around a DataFrame, selecting columns and rows, and generating summary statistics.

- Chapter 4, Identifying Missing Values and Outliers in Subsets of Data, explores a wide range of strategies to identify missing values and outliers across a whole DataFrame and by selected groups.

- Chapter 5, Using Visualizations for the Identification of Unexpected Values, demonstrates the use of matplotlib and seaborn tools to visualize how key variables are distributed, including with histograms, boxplots, scatter plots, line plots, and violin plots.

- Chapter 6, Cleaning and Exploring Data with Series Operations, discusses updating pandas series with scalars, arithmetic operations, and conditional statements based on the values of one or more series.

- Chapter 7, Fixing Messy Data when Aggregating, demonstrates multiple approaches to aggregating data by group, and discusses when to choose one approach over the others.

- Chapter 8, Addressing Data Issues when Combining DataFrames, examines different strategies for concatenating and merging data, and how to anticipate common data challenges when combining data.

- Chapter 9, Tidying and Reshaping Data, introduces several strategies for de-duplicating, stacking, melting, and pivoting data.

- Chapter 10, User-Defined Functions and Classes to Automate Data Cleaning, examines how to turn many of the techniques from the first nine chapters into reusable code.

작가 소개

▶About the Author
- Michael Walker
Michael Walker has worked as a data analyst for over 30 years at a variety of educational institutions. He has also taught data science, research methods, statistics, and computer programming to undergraduates since 2006. He generates public sector and foundation reports and conducts analyses for publication in academic journals.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • AI 에이전트 인 액션 (마이클 래넘, 류광)
  • 코드 너머, 회사보다 오래 남을 개발자 (김상기, 배문교)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 모던 소프트웨어 엔지니어링 (데이비드 팔리, 박재호)
  • 객체지향 시스템 디자인 원칙 (마우리시오 아니체, 오현석)
  • 시스템 설계 면접 완벽 가이드 (지용 탄, 나정호)
  • 요즘 우아한 AI 개발 (우아한형제들)
  • 최고의 프롬프트 엔지니어링 강의 (김진중)
  • 개정2판 | 시작하세요! 도커/쿠버네티스 (용찬호)
  • 테디노트의 랭체인을 활용한 RAG 비법노트_기본편 (이경록(테디노트))
  • 핸즈온 생성형 AI (오마르 산세비에로, 페드로 쿠엥카)
  • 개정2판 | 파인만의 컴퓨터 강의 (리처드 파인만, 서환수)
  • LLM 인 프로덕션 (크리스토퍼 브루소, 매슈 샤프)
  • 랭체인과 랭그래프로 구현하는 RAG・AI 에이전트 실전 입문 (니시미 마사히로, 요시다 신고)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 멀티패러다임 프로그래밍 (유인동)
  • 개정판 | 밑바닥부터 시작하는 딥러닝 1 (사이토 고키, 이복연)
  • 오브젝트 (조영호)
  • 밑바닥부터 시작하는 딥러닝 3 (사이토 고키, 이복연)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전