본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

TensorFlow 2.0 Computer Vision Cookbook 상세페이지

TensorFlow 2.0 Computer Vision Cookbook

Implement machine learning solutions to overcome various computer vision challenges

  • 관심 0
소장
전자책 정가
30,000원
판매가
30,000원
출간 정보
  • 2021.02.26 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 542 쪽
  • 5.4MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781838820688
ECN
-
TensorFlow 2.0 Computer Vision Cookbook

작품 정보

Get well versed with state-of-the-art techniques to tailor training processes and boost the performance of computer vision models using machine learning and deep learning techniques

▶Book Description
Computer vision is a scientific field that enables machines to identify and process digital images and videos. This book focuses on independent recipes to help you perform various computer vision tasks using TensorFlow.

The book begins by taking you through the basics of deep learning for computer vision, along with covering TensorFlow 2.x's key features, such as the Keras and tf.data.Dataset APIs. You'll then learn about the ins and outs of common computer vision tasks, such as image classification, transfer learning, image enhancing and styling, and object detection. The book also covers autoencoders in domains such as inverse image search indexes and image denoising, while offering insights into various architectures used in the recipes, such as convolutional neural networks (CNNs), region-based CNNs (R-CNNs), VGGNet, and You Only Look Once (YOLO).

Moving on, you'll discover tips and tricks to solve any problems faced while building various computer vision applications. Finally, you'll delve into more advanced topics such as Generative Adversarial Networks (GANs), video processing, and AutoML, concluding with a section focused on techniques to help you boost the performance of your networks.

By the end of this TensorFlow book, you'll be able to confidently tackle a wide range of computer vision problems using TensorFlow 2.x.

▶What You Will Learn
-Understand how to detect objects using state-of-the-art models such as YOLOv3
-Use AutoML to predict gender and age from images
-Segment images using different approaches such as FCNs and generative models
-Learn how to improve your network's performance using rank-N accuracy, label smoothing, and test time augmentation
-Enable machines to recognize people's emotions in videos and real-time streams
-Access and reuse advanced TensorFlow Hub models to perform image classification and object detection
-Generate captions for images using CNNs and RNNs

▶Key Features
-Develop, train, and use deep learning algorithms for computer vision tasks using TensorFlow 2.x
-Discover practical recipes to overcome various challenges faced while building computer vision models
-Enable machines to gain a human level understanding to recognize and analyze digital images and videos

▶Who This Book Is For
This book is for computer vision developers and engineers, as well as deep learning practitioners looking for go-to solutions to various problems that commonly arise in computer vision. You will discover how to employ modern machine learning (ML) techniques and deep learning architectures to perform a plethora of computer vision tasks. Basic knowledge of Python programming and computer vision is required.

▶What this book covers
- Chapter 1, Getting Started with TensorFlow 2.x for Computer Vision, serves as an overview of basic deep learning concepts, as well as being a first look at some important TensorFlow 2.x features, such as the Keras and tf.data.Dataset APIs. It also teaches you about common and necessary tasks such as saving and loading a model and visualizing a network architecture. It ends with the implementation of a simple image classifier.

- Chapter 2, Performing Image Classification, goes in-depth about the most common application of deep neural networks to computer vision: image classification. It explores the common varieties of classification, such as binary and multiclass classification, and then transitions to examples of multilabel classification and out-of-the-box solutions using transfer learning and TensorFlow Hub.

- Chapter 3, Harnessing the Power of Pre-Trained Networks with Transfer Learning, focuses on transfer learning, a powerful technique to reuse networks pre-trained on massive datasets to increase development productivity and the performance of deep learningpowered computer vision applications. This chapter starts by seeing you use pre-trained networks as feature extractors. Then, you will learn how to combine deep learning with traditional machine learning algorithms through a procedure called incremental learning. Finally, the chapter closes with two examples of fine-tuning: the first using the Keras API and the second relying on TensorFlow Hub.

- Chapter 4, Enhancing and Styling Images with DeepDream, Neural Style Transfer, and Image Super-Resolution, focuses on fun and less conventional applications of deep neural networks in computer vision, namely DeepDream, neural style transfer, and image superresolution.

- Chapter 5, Reducing Noise with Autoencoders, goes over autoencoders, a composite architecture used in domains such as image restoration, inverse image search indexes, and image denoising. It starts by introducing the dense and convolutional variants of autoencoders and then explains several applications, such as inverse image search engines and outlier detection.

- Chapter 6, Generative Models and Adversarial Attacks, introduces you to many examples and applications of Generative Adversarial Networks (GANs). The chapter ends with an example of how to perform an adversarial attack on convolutional neural networks.

- Chapter 7, Captioning Images with CNNs and RNNs, focuses on how to combine both convolutional and recurrent neural networks to generate textual descriptions of images.

- Chapter 8, Fine-Grained Understanding of Images through Segmentation, focuses on image segmentation, a fine-grained version of image classification, at the pixel level. It covers seminal segmentation architectures, such as U-Net and Mask-RCNN.

- Chapter 9, Localizing Elements in Images with Object Detection, covers the complex and yet common task of object detection. It goes over both traditional approaches based on image pyramids and sliding windows and more modern solutions, such as YOLO. It includes a thorough explanation of how to leverage the TensorFlow Object Detection API to train state-of-the-art models on custom datasets.

- Chapter 10, Applying the Power of Deep Learning to Videos, expands the application of deep neural networks to videos. Here, you will find examples of how to detect emotions, recognize actions, and generate frames in a video.

- Chapter 11, Streamlining Network Implementation with AutoML, explores the exciting subfield of AutoML using Autokeras, an experimental library built on top of TensorFlow 2.x, which uses Neural Architecture Search (NAS) to arrive at the best model possible for a given problem. The chapter starts by exploring the basic features of Autokeras and closes by using AutoML to create an age and gender prediction tool.

- Chapter 12, Boosting Performance, explains in detail many different techniques that can be used to boost the performance of a network, from simple but powerful methods, such as using ensembles, to more advanced ones, such as using GradientTape to tailor the training process to the specific needs of a project.

작가 소개

▶About the Author
- Jesus Martinez
Jesus Martinez is the founder of the computer vision e-learning site DataSmarts. He is a computer vision expert and has worked on a wide range of projects in the field, such as a piece of people-counting software fed with images coming from an RGB camera and a depth sensor, using OpenCV and TensorFlow. He developed a self-driving car in a simulation, using a convolutional neural network created with TensorFlow, that worked solely with visual inputs. Also, he implemented a pipeline that uses several advanced computer vision techniques to track lane lines on the road, as well as providing extra information such as curvature degree.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 모던 소프트웨어 엔지니어링 (데이비드 팔리, 박재호)
  • 러닝 랭체인 (메이오 오신, 누노 캄포스)
  • 개정4판 | 스위프트 프로그래밍 (야곰)
  • LLM 엔지니어링 (막심 라본, 폴 이우수틴)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 미래를 선점하라 : AI Agent와 함께라면 당신도 디지털 천재 (정승원(디지털 셰르파))
  • 잘되는 머신러닝 팀엔 이유가 있다 (데이비드 탄, 에이다 양)
  • 혼자 만들면서 공부하는 딥러닝 (박해선)
  • 개정판 | 개발자 기술 면접 노트 (이남희)
  • 스테이블 디퓨전 실전 가이드 (시라이 아키히코, AICU 미디어 편집부)
  • 개정판|혼자 공부하는 파이썬 (윤인성)
  • 실리콘밸리에서 통하는 파이썬 인터뷰 가이드 (런젠펑, 취안수쉐)
  • 7가지 프로젝트로 배우는 LLM AI 에이전트 개발 (황자, 김진호)
  • 개발자를 위한 쉬운 쿠버네티스 (윌리엄 데니스, 이준)
  • 전략적 모놀리스와 마이크로서비스 (반 버논, 토마스 야스쿨라)
  • 요즘 우아한 AI 개발 (우아한형제들)
  • 최고의 프롬프트 엔지니어링 강의 (김진중)
  • [리얼타임] 버프스위트 활용과 웹 모의해킹 (김명근, 조승현)
  • 입문자를 위한 맞춤형 AI 프로그램 만들기 (다비드스튜디오)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전