본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Generative AI with Python and TensorFlow 2 상세페이지

Generative AI with Python and TensorFlow 2

Create images, text, and music with VAEs, GANs, LSTMs, Transformer models

  • 관심 0
소장
전자책 정가
26,000원
판매가
26,000원
출간 정보
  • 2021.04.30 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 489 쪽
  • 14.7MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781800208506
ECN
-
Generative AI with Python and TensorFlow 2

작품 정보

Fun and exciting projects to learn what artificial minds can create

▶Book Description
Machines are excelling at creative human skills such as painting, writing, and composing music. Could you be more creative than generative AI?

In this book, you'll explore the evolution of generative models, from restricted Boltzmann machines and deep belief networks to VAEs and GANs. You'll learn how to implement models yourself in TensorFlow and get to grips with the latest research on deep neural networks.

There's been an explosion in potential use cases for generative models. You'll look at Open AI's news generator, deepfakes, and training deep learning agents to navigate a simulated environment.

Recreate the code that's under the hood and uncover surprising links between text, image, and music generation.

▶What You Will Learn
- -Export the code from GitHub into Google Colab to see how everything works for yourself
-Compose music using LSTM models, simple GANs, and MuseGAN
-Create deepfakes using facial landmarks, autoencoders, and pix2pix GAN
-Learn how attention and transformers have changed NLP
-Build several text generation pipelines based on LSTMs, BERT, and GPT-2
-Implement paired and unpaired style transfer with networks like StyleGAN
-Discover emerging applications of generative AI like folding proteins and creating videos from images

▶Key Features
-Code examples are in TensorFlow 2, which make it easy for PyTorch users to follow along
-Look inside the most famous deep generative models, from GPT to MuseGAN
-Learn to build and adapt your own models in TensorFlow 2.x
-Explore exciting, cutting-edge use cases for deep generative AI

▶Who This Book Is For
This is a book for Python programmers who are keen to create and have some fun using generative models. To make the most out of this book, you should have a basic familiarity with math and statistics for machine learning.

▶What this book covers
- Chapter 1, An Introduction to Generative AI: "Drawing" Data from Models, introduces the field of generative AI, from the underlying probability theory to recent examples of applied products of these methods.

- Chapter 2, Setting Up a TensorFlow Lab, describes how to set up a computing environment for developing generative AI models with TensorFlow using open source tools – Python, Docker, Kubernetes, and Kubeflow – in order to run a scalable code laboratory in the cloud.

- Chapter 3, Building Blocks of Deep Neural Networks, introduces foundational concepts for deep neural networks that will be utilized in the rest of the volume – how they were inspired by biological research, what challenges researchers overcame in developing ever larger and more sophisticated models, and the various building blocks of network architectures, optimizers, and regularizers utilized by generative AI examples in the rest of the book.

- Chapter 4, Teaching Networks to Generate Digits, demonstrates how to implement a deep belief network, a breakthrough neural network architecture that achieved state-of-the-art results in classifying images of handwritten digits through a generative AI approach, which teaches the network to generate images before learning to classify them.

- Chapter 5, Painting Pictures with Neural Networks Using VAEs, describes variational autoencoders (VAEs), an advancement from deep belief networks which create sharper images of complex objects through clever use of an objective function grounded in Bayesian statistics. The reader will implement both a basic and advanced VAE which utilizes inverse autoregressive flow (IAF), a recursive transformation that can map random numbers to complex data distributions to create striking synthetic images.

- Chapter 6, Image Generation with GANs, introduces generative adversarial networks, or GANs, as powerful deep learning architectures for generative modeling. Starting with the building blocks of GANs and other fundamental concepts, this chapter covers a number of GAN architectures and how they are used to generate high resolution images from random noise.

- Chapter 7, Style Transfer with GANs, focuses on a creative application of generative modeling, particularly GANs, called style transfer. Applications such as transforming black and white images to colored ones, aerial maps to Google Mapslike outputs, and background removal are all made possible using style transfer. We cover a number of paired and unpaired architectures like pix2pix and CycleGAN.

- Chapter 8, Deepfakes with GANs, introduces an interesting and controversial application of GANs called deepfakes. The chapter discusses the basic building blocks for deepfakes, such as features and different modes of operations, along with a number of key architectures. It also includes a number of hands-on examples to generate fake photos and videos based on key concepts covered, so readers can create their own deepfake pipelines.

- Chapter 9, The Rise of Methods for Text Generation, introduces concepts and techniques relating to text generation tasks. We first cover the very basics of language generation using deep learning models, starting from different ways of representing text in vector space. We progress to different architectural choices and decoding mechanisms to achieve high quality outputs. This chapter lays the foundation for more complex text generation methods covered in the subsequent chapter.

- Chapter 10, NLP 2.0: Using Transformers to Generate Text, covers the latest and greatest in the NLP domain, with a primary focus on the text generation capabilities of some of the state-of-the-art architectures (like GPT-x) based on transformers and the like, and how they have revolutionized the language generation and NLP domain in general.

- Chapter 11, Composing Music with Generative Models, covers music generation using generative models. This is an interesting yet challenging application of generative models and involves understanding a number of nuances and concepts associated with music. This chapter covers a number of different methods to generate music, from basic LSTMs to simple GANs and eventually MuseGAN for polyphonic music generation.

- Chapter 12, Play Video Games with Generative AI: GAIL, describes the connection between generative AI and reinforcement learning, a branch of machine learning that teaches "agents" to navigate real or virtual "environments" while performing specified tasks. Through a connection between GANs and reinforcement learning, the reader will teach a hopping figure to navigate a 3D environment by imitating an expert example of this movement.

- Chapter 13, Emerging Applications in Generative AI, describes recent research in generative AI, spanning biotechnology, fluid mechanics, video, and text synthesis.

작가 소개

▶About the Author
- Joseph Babcock
Joseph Babcock has spent more than a decade working with big data and AI in the e-commerce, digital streaming, and quantitative finance domains. Through his career he has worked on recommender systems, petabyte scale cloud data pipelines, A/B testing, causal inference, and time series analysis. He completed his PhD studies at Johns Hopkins University, applying machine learning to the field of drug discovery and genomics.

- Raghav Bali
Raghav Bali is an author of multiple well received books and a Senior Data Scientist at one of the world's largest healthcare organizations. His work involves research and development of enterprise-level solutions based on Machine Learning, Deep Learning, and Natural Language Processing for Healthcare and Insurance-related use cases. His previous experiences include working at Intel and American Express. Raghav has a master's degree (gold medalist) from the International Institute of Information Technology, Bangalore.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • AI 에이전트 생태계 (이주환)
  • 헤드 퍼스트 소프트웨어 아키텍처 (라주 간디, 마크 리처드)
  • 깃허브 액션으로 구현하는 실전 CI/CD 설계와 운영 (노무라 도모키, 김완섭)
  • 현장에서 통하는 도메인 주도 설계 실전 가이드 (마스다 토오루, 타나카 히사테루)
  • 딥러닝 제대로 이해하기 (사이먼 J. D. 프린스, 고연이)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 네이처 오브 코드 (자바스크립트판) (다니엘 쉬프만, 윤인성)
  • 도커로 구축한 랩에서 혼자 실습하며 배우는 네트워크 프로토콜 입문 (미야타 히로시, 이민성)
  • 개정판 | Do it! 플러터 앱 개발 & 출시하기 (조준수)
  • 모던 리액트 Deep Dive (김용찬)
  • 그로킹 동시성 (키릴 보브로프, 심효섭)
  • 해커톤 (노아론)
  • LLM과 RAG로 구현하는 AI 애플리케이션 (에디유, 대니얼김)
  • 이게 되네? 클로드 MCP 미친 활용법 27제 (박현규)
  • 개정2판 | 시작하세요! 도커/쿠버네티스 (용찬호)
  • 개정2판 | 파인만의 컴퓨터 강의 (리처드 파인만, 서환수)
  • npm Deep Dive (전유정, 김용찬)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 딥러닝 프로젝트를 위한 허깅페이스 실전 가이드 (윤대희, 김동화)
  • 한 권으로 배우는 게임 프로그래밍 (박태준, 박효재)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전