본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Interpretable Machine Learning with Python 상세페이지

Interpretable Machine Learning with Python

Learn to build interpretable high-performance models with hands-on real-world examples

  • 관심 0
소장
전자책 정가
35,000원
판매가
35,000원
출간 정보
  • 2021.03.26 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 737 쪽
  • 15.5MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781800206571
ECN
-
Interpretable Machine Learning with Python

작품 정보

Understand the key aspects and challenges of machine learning interpretability, learn how to overcome them with interpretation methods, and leverage them to build fairer, safer, and more reliable models

▶Book Description
Do you want to understand your models and mitigate risks associated with poor predictions using machine learning (ML) interpretation? Interpretable Machine Learning with Python can help you work effectively with ML models.

The first section of the book is a beginner's guide to interpretability, covering its relevance in business and exploring its key aspects and challenges. You'll focus on how white-box models work, compare them to black-box and glass-box models, and examine their trade-off. The second section will get you up to speed with a vast array of interpretation methods, also known as Explainable AI (XAI) methods, and how to apply them to different use cases, be it for classification or regression, for tabular, time-series, image or text. In addition to the step-by-step code, the book also helps the reader to interpret model outcomes using examples. In the third section, you'll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. The methods you'll explore here range from state-of-the-art feature selection and dataset debiasing methods to monotonic constraints and adversarial retraining.

By the end of this book, you'll be able to understand ML models better and enhance them through interpretability tuning.

▶What You Will Learn
-Recognize the importance of interpretability in business
-Study models that are intrinsically interpretable such as linear models, decision trees, and Naive Bayes
-Become well-versed in interpreting models with model-agnostic methods
-Visualize how an image classifier works and what it learns
-Understand how to mitigate the influence of bias in datasets
-Discover how to make models more reliable with adversarial robustness
-Use monotonic constraints to make fairer and safer models

▶Key Features
-Learn how to extract easy-to-understand insights from any machine learning model
-Become well-versed with interpretability techniques to build fairer, safer, and more reliable models
-Mitigate risks in AI systems before they have broader implications by learning how to debug black-box models

▶Who This Book Is For
This book is for data scientists, machine learning developers, and data stewards who have an increasingly critical responsibility to explain how the AI systems they develop work, their impact on decision making, and how they identify and manage bias. Working knowledge of machine learning and the Python programming language is expected.

▶What this book covers
- Chapter 1, Interpretation, Interpretability, and Explainability; and Why Does It All Matter?, introduces machine learning interpretation and related concepts such as interpretability, explainability, black-box models, and transparency, providing definitions for these terms to avoid ambiguity. We then underpin the value of machine learning interpretability for businesses.

- Chapter 2, Key Concepts of Interpretability, uses a cardiovascular disease prediction example to introduce two fundamental concepts (feature importance and decision regions) and the most important taxonomies used to classify interpretation methods. We also detail what elements hinder machine learning interpretability as a primer for what lies ahead.

- Chapter 3, Interpretation Challenges, discusses the traditional methods used for machine learning interpretation for both regression and classification with a flight delay prediction problem. We will then examine the limitations of these traditional methods and explain what makes "white-box" models intrinsically interpretable and why we cannot always use white-box models. To answer this question, we consider the trade-off between prediction performance and model interpretability. Finally, we will discover some new "glass-box" models that attempt to not compromise in this trade-off.

- Chapter 4, Fundamentals of Feature Importance and Impact, employs a birth order classification example to discuss different methods to obtain feature importance such as those that use a model's intrinsic parameters, and a more reliable model-agnostic method called Permutation Feature Importance. Then, to convey a single feature's marginal impact on the prediction, we will study how to render and interpret Partial Dependence Plots (PDP) and Individual Conditional Expectation (ICE) plots.

- Chapter 5, Global Model-Agnostic Interpretation Methods, explores game-theory-inspired SHapley Additive exPlanations (SHAP) in great detail with fuel efficiency regression models, then visualizes conditional marginal distribution Accumulated Local Effects (ALE) plots. Finally, we touch on Global Surrogates, which can be very accurate and efficient interpretation tools when chosen correctly.

- Chapter 6, Local Model-Agnostic Interpretation Methods, covers local interpretation methods, explaining a single or a group of predictions. To this end, the chapter covers how to leverage SHAP and Local Interpretable Model-agnostic Explanations (LIME) for local interpretations with a chocolate bar rating example, with both tabular and text data.

- Chapter 7, Anchor and Counterfactual Explanations, continues with local model interpretations, but only for classification problems. We use a recidivism risk prediction example to understand how we can explain unfair predictions in a human-interpretable way. This chapter covers Anchors, Counterfactuals, and the Contrastive Explanation Method (CEM), as well as the What-If-Tool (WIT).

- Chapter 8, Visualizing Convolutional Neural Networks, exclusively explores interpretation methods that work with Convolutional Neural Network (CNN) models with a fruit classifier model. Once we have grasped how a CNN learns with Activations, we will study several gradient-based attribution methods, such as Saliency Maps, Grad-CAM, and Integrated Gradients to debug class attribution. Lastly, we will extend our attribution debugging know-how with perturbation-based attribution methods such as Occlusion Sensitivity, LIME, and CEM.

- Chapter 9, Interpretation Methods for Multivariate Forecasting and Sensitivity Analysis, uses a traffic forecasting problem and Long Short-Term Memory (LSTM) models to look at how to employ Integrated Gradients and SHAP for this use case. Lastly, the chapter looks at how forecasting and uncertainty are intrinsically linked, and sensitivity analysis –a family of methods designed to measure the uncertainty of a model's output in relation to its input. We study two such methods: Morris for factor prioritization and Sobol for factor fixing.

- Chapter 10, Feature Selection and Engineering for Interpretability, uses a challenging non-profit direct mailing optimization problem to review filter-based feature selection methods such as Spearman's correlation and learn about embedded methods such as Lasso. Then, you will discover wrapper methods such as Sequential Feature Selection and hybrid ones such as Recursive Feature Elimination, as well as more advanced ones such as Genetic Algorithms. Lastly, even though feature engineering is typically conducted before selection, there's value in exploring feature engineering for many reasons after the dust has settled.

- Chapter 11, Bias Mitigation and Causal Inference Methods, takes a credit card default problem to demonstrate leveraging fairness metrics and visualizations to detect undesired bias. Then, the chapter looks at how to reduce it via pre-processing methods such as reweighting and disparate impact remover for in-processing and equalized odds for post-processing. Then, we test treatments for lowering credit card default and leverage causal modeling to determine their average treatment effects (ATE), and conditional average treatment effects (CATE). Finally, we test causal assumptions and the robustness of estimates.

- Chapter 12, Monotonic Constraints and Model Tuning for Interpretability, continues with the recidivism risk prediction problem from Chapter 7. We will learn how to place guardrails with feature engineering on the data side and monotonic and interaction constraints on the model to ensure fairness while also learning how to tune a model when there are several objectives.

- Chapter 13, Adversarial Robustness, uses a face mask detection problem to cover an end-to-end adversarial solution. An adversary can purposely thwart a model in many ways, but we focus on evasion attacks such as Carlini and Wagner Infinity- Norm and Adversarial Patches and briefly explain other forms of attacks. We explain two defense methods: spatial smoothing preprocessing and adversarial training. Lastly, we demonstrate one robustness evaluation method and one certification method.

- Chapter 14, What's Next for Machine Learning Interpretability?, summarizes what was learned in the context of the ecosystem of machine learning interpretability methods. And then speculates on what's to come next!

작가 소개

▶About the Author
- Serg Masis
Serg Masis has been at the confluence of the internet, application development, and analytics for the last two decades. Currently, he's a Climate and Agronomic Data Scientist at Syngenta, a leading agribusiness company with a mission to improve global food security. Before that role, he co-founded a startup, incubated by Harvard Innovation Labs, that combined the power of cloud computing and machine learning with principles in decision-making science to expose users to new places and events. Whether it pertains to leisure activities, plant diseases, or customer lifetime value, Serg is passionate about providing the often-missing link between data and decision-making -and machine learning interpretation helps bridge this gap more robustly.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 모던 소프트웨어 엔지니어링 (데이비드 팔리, 박재호)
  • 러닝 랭체인 (메이오 오신, 누노 캄포스)
  • 개정4판 | 스위프트 프로그래밍 (야곰)
  • LLM 엔지니어링 (막심 라본, 폴 이우수틴)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 미래를 선점하라 : AI Agent와 함께라면 당신도 디지털 천재 (정승원(디지털 셰르파))
  • 잘되는 머신러닝 팀엔 이유가 있다 (데이비드 탄, 에이다 양)
  • 혼자 만들면서 공부하는 딥러닝 (박해선)
  • 개정판 | 개발자 기술 면접 노트 (이남희)
  • 스테이블 디퓨전 실전 가이드 (시라이 아키히코, AICU 미디어 편집부)
  • 개정판|혼자 공부하는 파이썬 (윤인성)
  • 실리콘밸리에서 통하는 파이썬 인터뷰 가이드 (런젠펑, 취안수쉐)
  • 7가지 프로젝트로 배우는 LLM AI 에이전트 개발 (황자, 김진호)
  • 개발자를 위한 쉬운 쿠버네티스 (윌리엄 데니스, 이준)
  • 전략적 모놀리스와 마이크로서비스 (반 버논, 토마스 야스쿨라)
  • 요즘 우아한 AI 개발 (우아한형제들)
  • 최고의 프롬프트 엔지니어링 강의 (김진중)
  • [리얼타임] 버프스위트 활용과 웹 모의해킹 (김명근, 조승현)
  • 입문자를 위한 맞춤형 AI 프로그램 만들기 (다비드스튜디오)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전