본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Graph Machine Learning 상세페이지

Graph Machine Learning

Take graph data to the next level by applying machine learning techniques and algorithms

  • 관심 0
소장
전자책 정가
22,000원
판매가
22,000원
출간 정보
  • 2021.06.25 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 338 쪽
  • 13.5MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781800206755
UCI
-
Graph Machine Learning

작품 정보

Build machine learning algorithms using graph data and efficiently exploit topological information within your models

▶Book Description
Graph Machine Learning provides a new set of tools for processing network data and leveraging the power of the relation between entities that can be used for predictive, modeling, and analytics tasks.

You will start with a brief introduction to graph theory and graph machine learning, understanding their potential. As you proceed, you will become well versed with the main machine learning models for graph representation learning: their purpose, how they work, and how they can be implemented in a wide range of supervised and unsupervised learning applications. You'll then build a complete machine learning pipeline, including data processing, model training, and prediction in order to exploit the full potential of graph data. Moving ahead, you will cover real-world scenarios such as extracting data from social networks, text analytics, and natural language processing (NLP) using graphs and financial transaction systems on graphs. Finally, you will learn how to build and scale out data-driven applications for graph analytics to store, query, and process network information, before progressing to explore the latest trends on graphs.

By the end of this machine learning book, you will have learned essential concepts of graph theory and all the algorithms and techniques used to build successful machine learning applications.

▶What You Will Learn
-Write Python scripts to extract features from graphs
-Distinguish between the main graph representation learning techniques
-Become well-versed with extracting data from social networks, financial transaction systems, and more
-Implement the main unsupervised and supervised graph embedding techniques
-Get to grips with shallow embedding methods, graph neural networks, graph regularization methods, and more
-Deploy and scale out your application seamlessly

▶Key Features
-Implement machine learning techniques and algorithms in graph data
-Identify the relationship between nodes in order to make better business decisions
-Apply graph-based machine learning methods to solve real-life problems

▶Who This Book Is For
This book is for data scientists, data analysts, graph analysts, and graph professionals who want to leverage the information embedded in the connections and relations between data points to boost their analysis and model performance using machine learning. The book will also be useful for machine learning developers or anyone who want to build ML-driven graph databases. A beginner-level understanding of graph databases and graph data is required. Intermediate-level working knowledge of Python programming and machine learning is also expected to make the most out of this book.

▶What this book covers
- Chapter 1, Getting Started with Graphs, introduces the basic concepts of graph theory using the NetworkX Python library.

- Chapter 2, Graph Machine Learning, introduces the main concepts of graph machine learning and graph embedding techniques.

- Chapter 3, Unsupervised Graph Learning, covers recent unsupervised graph embedding methods.

- Chapter 4, Supervised Graph Learning, covers recent supervised graph embedding methods.

- Chapter 5, Problems with Machine Learning on Graphs, introduces the most common machine learning tasks on graphs.

- Chapter 6, Social Network Analysis, shows an application of machine learning algorithms on social network data.

- Chapter 7, Text Analytics and Natural Language Processing Using Graphs, shows the application of machine learning algorithms to natural language processing tasks.

- Chapter 8, Graph Analysis for Credit Card Transactions, shows the application of machine learning algorithms to credit card fraud detection.

- Chapter 9, Building a Data-Driven Graph-Powered Application, introduces some technologies and techniques that are useful for dealing with large graphs.

- Chapter 10, Novel Trends on Graphs, introduces some novel trends (algorithms and applications) in graph machine learning.

작가 소개

▶About the Author
- Claudio Stamile
Claudio Stamile received an M.Sc. degree in computer science from the University of Calabria (Cosenza, Italy) in September 2013 and, in September 2017, he received his joint Ph.D. from KU Leuven (Leuven, Belgium) and Universite Claude Bernard Lyon 1 (Lyon, France). During his career, he has developed a solid background in artificial intelligence, graph theory, and machine learning, with a focus on the biomedical field. He is currently a senior data scientist in CGnal, a consulting firm fully committed to helping its top-tier clients implement data-driven strategies and build AI-powered solutions to promote efficiency and support new business models.

- Aldo Marzullo
Aldo Marzullo received an M.Sc. degree in computer science from the University of Calabria (Cosenza, Italy) in September 2016. During his studies, he developed a solid background in several areas, including algorithm design, graph theory, and machine learning. In January 2020, he received his joint Ph.D. from the University of Calabria and Universite Claude Bernard Lyon 1 (Lyon, France), with a thesis entitled Deep Learning and Graph Theory for Brain Connectivity Analysis in Multiple Sclerosis. He is currently a postdoctoral researcher at the University of Calabria and collaborates with several international institutions.

- Enrico Deusebio
Enrico Deusebio is currently the chief operating officer at CGnal, a consulting firm that helps its top-tier clients implement data-driven strategies and build AI-powered solutions. He has been working with data and large-scale simulations using high-performance facilities and large-scale computing centers for over 10 years, both in an academic and industrial context. He has collaborated and worked with top-tier universities, such as the University of Cambridge, the University of Turin, and the Royal Institute of Technology (KTH) in Stockholm, where he obtained a Ph.D. in 2014. He also holds B.Sc. and M.Sc. degrees in aerospace engineering from Politecnico di Torino.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 바이브 코딩 너머 개발자 생존법 (애디 오스마니, 강민혁)
  • 혼자 공부하는 바이브 코딩 with 클로드 코드 (조태호)
  • 요즘 당근 AI 개발 (당근 팀)
  • 도메인 주도 설계를 위한 함수형 프로그래밍 (스콧 블라신, 박주형)
  • 요즘 바이브 코딩 클로드 코드 완벽 가이드 (최지호(코드팩토리))
  • AI 자율학습 밑바닥부터 배우는 AI 에이전트 (다비드스튜디오)
  • 개정2판 | 소프트웨어 아키텍처 The Basics (마크 리처즈, 닐 포드)
  • 연필과 종이로 풀어보는 딥러닝 수학 워크북 214제 (톰 예(Tom yeh) )
  • 그림으로 이해하는 도커와 쿠버네티스 (토쿠나가 코헤이 , 서수환)
  • 알아서 잘하는 에이전틱 AI 시스템 구축하기 (안자나바 비스와스, 릭 탈루크다르)
  • 러스트 클린 코드 (브렌든 매슈스, 윤인도)
  • 밑바닥부터 만들면서 배우는 LLM (세바스찬 라시카, 박해선)
  • 혼자 공부하는 컴퓨터 구조+운영체제 (강민철)
  • 개정판 | Do it! 점프 투 파이썬 (박응용)
  • AI 엔지니어링 (칩 후옌, 변성윤)
  • 밑바닥부터 시작하는 웹 브라우저 (파벨 판체카, 크리스 해럴슨)
  • 혼자 공부하는 네트워크 (강민철)
  • 쏙쏙 들어오는 자료구조 (마르첼로 라 로카, 김성원)
  • 데이터베이스 설계, 이렇게 하면 된다 (미크, 윤인성)
  • 기본 이론에서 실무 예제까지, HANA 기반 Easy ABAP 3.0 (김성준, 박재형)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전