본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Expert Data Modeling with Power BI 상세페이지

Expert Data Modeling with Power BI

Get the best out of Power BI by building optimized data models for reporting and business needs

  • 관심 0
소장
전자책 정가
27,000원
판매가
27,000원
출간 정보
  • 2021.06.11 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 612 쪽
  • 33.5MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781800203174
ECN
-
Expert Data Modeling with Power BI

작품 정보

Manage and work with business data effectively by learning data modeling techniques and leveraging the latest features of Power BI

▶What You Will Learn
-Implement virtual tables and time intelligence functionalities in DAX to build a powerful model
-Identify Dimension and Fact tables and implement them in Power Query Editor
-Deal with advanced data preparation scenarios while building Star Schema
-Explore best practices for data preparation and data modeling
-Discover different hierarchies and their common pitfalls
-Understand complex data models and how to decrease the level of model complexity with different data modeling approaches

▶Key Features
-Understand data modeling techniques to get the best out of data using Power BI
-Define the relationships between data to extract valuable insights
-Solve a wide variety of business challenges by building optimal data models

▶Who This Book Is For
This MS Power BI book is for BI users, data analysts, and analysis developers who want to become well-versed with data modeling techniques to make the most of Power BI. Basic knowledge of Power BI and Star Schema will help you to understand the concepts covered in this book.

▶What this book covers
- Chapter 1, Introduction to Data Modeling in Power BI, briefly describes different functionalities of Power BI and why data modeling is important. This chapter also reveals some important notes to be considered around Power BI licensing, which potentially could affect your data model. This chapter introduces an iterative data modeling approach, which guarantees an agile Power BI implementation.

- Chapter 2, Data Analysis eXpressions and Data Modeling, does not discuss a lot of DAX as in parts 3 and 4 of this book DAX is heavily used to solve different data modeling challenges. Therefore, we'll only focus on the DAX functionalities that are harder to understand and are very relevant to data modeling. This chapter starts with a quick introduction to DAX, then we jump straight to virtual tables and time intelligence functionalities and their applications in real-world scenarios.

- Chapter 3, Data Preparation in Power Query Editor, quickly explains the components of Power Query and their application. It expresses the emphasis of creating query parameters and user-defined functions along with real-world use cases and scenarios to demonstrate how powerful they are in building much more flexible and maintainable models.

- Chapter 4, Getting Data from Various Sources, explains getting data from different data sources that are more commonly used in Power BI. Then, the importance of data source certification is explained, which helps you set your expectations on the type of data you're going to deal with. This is especially helpful in estimating data modeling efforts. Different connection modes are also explained in this chapter.

- Chapter 5, Common Data Preparation Steps, explains common data preparation steps along with real-world hands-on scenarios. A combination of what you have learned so far in this book with the steps to be discussed in this chapter gives you a strong foundation to go on to the next chapters and build your data models more efficiently. By learning these functionalities, you can deal with a lot of different scenarios in implementing different data models.

- Chapter 6, Star Schema Preparation in Power Query Editor, explains how to prepare your queries based on the star schema data modeling approach with real-life scenarios. The Power Query M language will be heavily used in this chapter, so you will learn how to deal with real-world challenges along the way. As you have already learned common data preparation steps in the previous chapter, the majority of Power Query scenarios explained in this chapter will be easier to implement. You'll also learn how to build dimension tables and fact tables, and how to denormalize your queries when needed.

- Chapter 7, Data Preparation Common Best Practices, explains common best practices in data preparation. Following these practices will help you build more efficient data models that are easier to maintain and more flexible to make changes to. Following these practices, you can also avoid common mistakes, which can make your life much easier.

- Chapter 8, Data Modeling Components, explains data modeling components from a Power BI perspective along with real file examples. In this chapter, we heavily use DAX when applicable so having a basic understanding of DAX is essential. We also have a complete star schema model in Power BI. The concept of config tables is covered, which unlocks a lot of possibilities in handling more complex business logic in the data model. The chapter ends with data modeling naming conventions.

- Chapter 9, Star Shema and Data Modeling Common Best Practices, explains common data modeling best practices to help you make better decisions while building your data model to prevent facing some known issues down the road. For instance, dealing with data type issues in key columns that are used in relationships is somewhat time-consuming to identify, but it's very easy to prevent. So, knowing data modeling best practices helps you save a lot of maintenance time and consequently saves you money.

- Chapter 10, Advanced Data Modeling Techniques, explains special modeling techniques that solve special business requirements. A good data modeler is one who is always open to new challenges. You may face some of the advanced business requirements discussed in this chapter or you may face something different but similar. The message we want to send in this chapter is to think freely when dealing with new business challenges and try to be innovative to get the best results.

- Chapter 11, Row-Level Security, explains how to implement row-level security (RLS) in a Power BI data model. Dealing with RLS can be complex and knowing how to deal with different situations needs deep knowledge on data modeling and filter propagation concepts. Our aim in this chapter is to transfer that knowledge to you so you can design and implement high-performing and low-maintenance data models.

- Chapter 12, Extra Options and Features Available for Data Modeling, introduces data modeling options such as Slowly Changing Dimensions (SCD), Object-Level Security (OLS), dataflows, and composite models, giving you broad exposure to all those topics.

작가 소개

▶About the Author
- Soheil Bakhshi
Soheil Bakhshi is the founder of Data Vizioner and is a sought after BI consultant. Working in data and analytics for more than 20 years, Soheil's experience lies in Microsoft BI, Data Warehousing, and Power BI platform. He possesses MSCE, MCSA certifications and is a Microsoft MVP (Most Valuable Professional). He has a passion for sharing knowledge via his website and speaking at conferences and Power BI community events locally and globally. In following his desire for simplicity and efficiency, he is behind Power BI community tools and commercial products such as Power BI Exporter and Power BI Documenter.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 모던 소프트웨어 엔지니어링 (데이비드 팔리, 박재호)
  • 러닝 랭체인 (메이오 오신, 누노 캄포스)
  • 개정4판 | 스위프트 프로그래밍 (야곰)
  • LLM 엔지니어링 (막심 라본, 폴 이우수틴)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 미래를 선점하라 : AI Agent와 함께라면 당신도 디지털 천재 (정승원(디지털 셰르파))
  • 잘되는 머신러닝 팀엔 이유가 있다 (데이비드 탄, 에이다 양)
  • 혼자 만들면서 공부하는 딥러닝 (박해선)
  • 개정판 | 개발자 기술 면접 노트 (이남희)
  • 스테이블 디퓨전 실전 가이드 (시라이 아키히코, AICU 미디어 편집부)
  • 개정판|혼자 공부하는 파이썬 (윤인성)
  • 실리콘밸리에서 통하는 파이썬 인터뷰 가이드 (런젠펑, 취안수쉐)
  • 7가지 프로젝트로 배우는 LLM AI 에이전트 개발 (황자, 김진호)
  • 개발자를 위한 쉬운 쿠버네티스 (윌리엄 데니스, 이준)
  • 전략적 모놀리스와 마이크로서비스 (반 버논, 토마스 야스쿨라)
  • 요즘 우아한 AI 개발 (우아한형제들)
  • 최고의 프롬프트 엔지니어링 강의 (김진중)
  • [리얼타임] 버프스위트 활용과 웹 모의해킹 (김명근, 조승현)
  • 입문자를 위한 맞춤형 AI 프로그램 만들기 (다비드스튜디오)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전