본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Machine Learning Using TensorFlow Cookbook 상세페이지

Machine Learning Using TensorFlow Cookbook

Create powerful machine learning algorithms with TensorFlow

  • 관심 0
소장
전자책 정가
19,000원
판매가
19,000원
출간 정보
  • 2021.02.08 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 417 쪽
  • 4.5MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781800206885
ECN
-
Machine Learning Using TensorFlow Cookbook

작품 정보

Comprehensive recipes to give you valuable insights on Transformers, Reinforcement Learning, and more

▶Book Description
The independent recipes in Machine Learning Using TensorFlow Cookbook will teach you how to perform complex data computations and gain valuable insights into your data. Dive into recipes on training models, model evaluation, sentiment analysis, regression analysis, artificial neural networks, and deep learning - each using Google's machine learning library, TensorFlow.

This cookbook covers the fundamentals of the TensorFlow library, including variables, matrices, and various data sources. You'll discover real-world implementations of Keras and TensorFlow and learn how to use estimators to train linear models and boosted trees, both for classification and regression.

Explore the practical applications of a variety of deep learning architectures, such as recurrent neural networks and Transformers, and see how they can be used to solve computer vision and natural language processing (NLP) problems.

With the help of this book, you will be proficient in using TensorFlow, understand deep learning from the basics, and be able to implement machine learning algorithms in real-world scenarios.

▶What You Will Learn
-Take TensorFlow into production
-Implement and fine-tune Transformer models for various NLP tasks
-Apply reinforcement learning algorithms using the TF-Agents framework
-Understand linear regression techniques and use Estimators to train linear models
-Execute neural networks and improve predictions on tabular data
-Master convolutional neural networks and recurrent neural networks through practical recipes

▶Key Features
-Deep Learning solutions from Kaggle Masters and Google Developer Experts
-Get to grips with the fundamentals including variables, matrices, and data sources
-Learn advanced techniques to make your algorithms faster and more accurate

▶Who This Book Is For
If you are a data scientist or a machine learning engineer, and you want to skip detailed theoretical explanations in favor of building production-ready machine learning models using TensorFlow, this book is for you.</p><p>Basic familiarity with Python, linear algebra, statistics, and machine learning is necessary to make the most out of this book.

▶What this book covers
- Chapter 1, Getting Started with TensorFlow 2.x, covers the main objects and concepts in TensorFlow. We introduce tensors, variables, and placeholders. We also show how to work with matrices and various mathematical operations in TensorFlow. At the end of the chapter, we show how to access the data sources used in the rest of the book.

- Chapter 2, The TensorFlow Way, establishes how to connect all the algorithm components from Chapter 1, Getting Started with TensorFlow, into a computational graph in multiple ways to create a simple classifier. Along the way, we cover computational graphs, loss functions, backpropagation, and training with data.

- Chapter 3, Keras, focuses on the high-level TensorFlow API named Keras. After having introduced the layers that are the building blocks of the models, we will cover the Sequential, Functional, and Sub-Classing APIs to create Keras models.

- Chapter 4, Linear Regression, focuses on using TensorFlow for exploring various linear regression techniques, such as Lasso and Ridge, ElasticNet, and logistic regression. We conclude extending linear models with Wide & Deep. We show how to implement each model using estimators.

- Chapter 5, Boosted Trees, discusses the TensorFlow implementation of boosted trees – one of the most popular models for tabular data. We demonstrate the functionality by addressing a business problem of predicting hotel booking cancellations.

- Chapter 6, Neural Networks, covers how to implement neural networks in TensorFlow, starting with the operational gates and activation function concepts. We then show a shallow neural network and how to build up various different types of layers. We end the chapter by teaching a TensorFlow neural network to play tic tac toe.

- Chapter 7, Predicting with Tabular Data, this chapter extends the previous one by demonstrating how to use TensorFlow for tabular data. We show how to process data handling missing values, binary, nominal, ordinal, and date features. We also introduce activation functions like GELU and SELU (particularly effective for deep architectures) and the correct usage of cross-validation in order to validate your architecture and parameters when you do not have enough data available.

- Chapter 8, Convolutional Neural Networks, expands our knowledge of neural networks by illustrating how to use images with convolutional layers (and other image layers and functions). We show how to build a shortened CNN for MNIST digit recognition and extend it to color images in the CIFAR-10 task. We also illustrate how to extend prior-trained image recognition models for custom tasks. We end the chapter by explaining and demonstrating the StyleNet/neural style and DeepDream algorithms in TensorFlow.

- Chapter 9, Recurrent Neural Networks, introduces a powerful architecture type (RNN) that has been instrumental in achieving state-of-the-art results on different modes of sequential data; applications presented include time-series prediction and text sentiment analysis.

- Chapter 10, Transformers, is dedicated to Transformers – a new class of deep learning models that have revolutionized the field of Natural Language Processing (NLP). We demonstrate how to leverage their strength for both generative and discriminative tasks.

- Chapter 11, Reinforcement Learning with TensorFlow and TF-Agents, presents the TensorFlow library dedicated to reinforcement learning. The structured approach allows us to handle problems ranging from simple games to content personalization in e-commerce.

- Chapter 12, Taking TensorFlow to Production, gives tips and examples on moving TensorFlow to a production environment and how to take advantage of multiple processing devices (for example, GPUs) and setting up TensorFlow distributed on multiple machines. We also show the various uses of TensorBoard, and how to view computational graph metrics and charts. We end the chapter by showing an example of setting up an RNN model on TensorFlow serving an API.

작가 소개

▶About the Author
- Alexia Audevart
Alexia Audevart, also a Google Developer Expert in machine learning, is the founder of datactik. She is a data scientist and helps her clients solve business problems by making their applications smarter. Her first book is a collaboration on artificial intelligence and neuroscience.

- Konrad Banachewicz
Konrad Banachewicz holds a PhD in statistics from Vrije Universiteit Amsterdam. He is a lead data scientist at eBay and a Kaggle Grandmaster. He worked in a variety of financial institutions on a wide array of quantitative data analysis problems. In the process, he became an expert on the entire lifetime of a data product cycle.

- Luca Massaron
Luca Massaron is a Google Developer Expert in machine learning with more than a decade of experience in data science. He is also the author of several best-selling books on AI and a Kaggle master who reached number 7 for his performance in data science competitions.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 멀티패러다임 프로그래밍 (유인동)
  • 조코딩의 AI 비트코인 자동 매매 시스템 만들기 (조동근)
  • 요즘 우아한 AI 개발 (우아한형제들)
  • MCP 혁신: 클로드로 엑셀, 한글, 휴가 등록부터 결재문서 자동화까지 with python (이호준, 차경림)
  • 랭체인 & 랭그래프로 AI 에이전트 개발하기 (서지영)
  • 랭체인과 RAG로 배우는 실전 LLM 애플리케이션 개발 (양기빈, 조국일)
  • 윌 라슨의 엔지니어링 리더십 (윌 라슨, 임백준)
  • 이펙티브 소프트웨어 설계 (토마스 레렉, 존 스키트)
  • 이펙티브 소프트웨어 아키텍처 (올리버 골드만, 최희철)
  • LLM을 활용한 실전 AI 애플리케이션 개발 (허정준, 정진호)
  • 플랫폼 엔지니어링 (이언 놀런드, 카미유 푸르니에)
  • OpenAI, 구글 Gemini, 업스테이지 Solar API를 활용한 실전 LLM 앱 개발 (최용, 조승우)
  • 소프트웨어 엔지니어 가이드북 (게르겔리 오로스, 이민석)
  • 최고의 프롬프트 엔지니어링 강의 (김진중)
  • 카프카 커넥트 (미카엘 메종, 케이트 스탠리)
  • 개정판 | 개발자 기술 면접 노트 (이남희)
  • 개정판 | 혼자 공부하는 머신러닝+딥러닝 (박해선)
  • 대규모 리액트 웹 앱 개발 (애디 오스마니, 하산 지르데)
  • 실전! 12가지 프로젝트로 배우는 OpenAI API, 랭체인 완벽 활용법 (김준성, 브라이스 유)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전