모든 기술이 그렇듯이 ML도 의도하지 않은 오용이나 의도적인 남용 때문에 실패할 수 있습니다. 조직과 대중이 이 흥미로운 기술의 진정한 이점을 활용하려면 그러한 위험 요인을 완화해야 합니다. 이 책이 준수하려는 초기 표준이 최근 조금씩 구체화되기 시작했지만, 머신러닝 실무에서는 아직 널리 인정받는 전문 자격증이나 모범 사례가 부족합니다. 따라서 머신러닝 기술이 세상에 배포될 때 해당 기술의 결과에 대한 책임을 실무자가 떠안아야 하는 실정입니다.
이 책은 실무자가 AI 모델 위험관리 프로세스를 제대로 이해하고, 일반적인 파이썬 도구를 사용해 설명 가능한 모델을 학습하며 안전성, 편향 관리, 보안, 프라이버시 문제를 관리하는 새로운 방법을 제공합니다. ML의 리스크를 제거하는 미묘한 접근 방식을 취함으로써, 책임감 있고 지속 가능한 방식으로 ML 시스템을 성공적으로 배포할 수 있는 귀중한 리소스를 독자들에게 제공합니다.
주요 내용
책임 있는 AI를 위한 기술적 접근 방식 이해하기
성공적이고 영향력 있는 AI 위험 관리 사례를 만드는 방법 알아보기
AI 기술 채택을 위한 기존 표준, 법률 및 평가 관련 기본 가이드 확인하기
새로운 NIST AI 위험 관리 프레임워크 살펴보기
깃허브 및 코랩의 대화형 리소스 활용하기
BNH.AI의 수석 과학자로 포춘 500대 기업과 최첨단 스타트업에 AI 위험에 관해 자문을 제공하고, NIST의 인공지능 위험관리 프레임워크를 지원하는 연구를 수행하고 있다. 조지 워싱턴 경영대학원의 의사결정과학과 객원 교수로 데이터 윤리와 비즈니스 분석, 머신러닝 강의를 진행하고 있다. BNH를 공동 설립하기 전에는 H2O.ai에서 책임 있는 AI 분야를 이끌면서 머신러닝의 설명 가능성 및 편향성 완화를 위한 세계 최초의 상용 응용 프로그램을 개발했다. 또한 SAS 연구소에서 글로벌 고객 지원 업무와 R&D 업무를 담당했다. 일리노이 대학교에서 계산화학을 전공한 후 노스캐롤라이나 주립대학교의 고급 분석 연구소를 졸업했다.
미국 과학, 공학 및 의학 아카데미(National Academies of Science, Engineering, and Medicine), ACM SIGKDD, 합동 통계 회의(Joint Statistical Meetings)에서 설명 가능한 인공지능과 관련 주제로 발표했다. McKinsey.com, 오라일리 레이더(O’Reilly Radar), 톰슨 로이터 규제 인텔리전스(Thompson Reuters Regulatory Intelligence) 등의 매체에 글을 기고했으며, 그의 기술 성과는 『포춘(Fortune)』, 『와이어드(Wired)』, 『인포월드(InfoWorld)』, 『테크크런치(TechCrunch)』 등에 소개되었다.