본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Machine Learning Solutions 상세페이지

Machine Learning Solutions

Expert techniques to tackle complex machine learning problems using Python

  • 관심 0
소장
전자책 정가
12,000원
판매가
12,000원
출간 정보
  • 2018.04.27 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 567 쪽
  • 22.6MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781788398893
ECN
-

이 작품의 시리즈더보기

  • [체험판] Machine Learning Solutions (Jalaj Thanaki)
  • Machine Learning Solutions (Jalaj Thanaki)
Machine Learning Solutions

작품 정보

▶Book Description
Machine learning (ML) helps you find hidden insights from your data without the need for explicit programming. This book is your key to solving any kind of ML problem you might come across in your job.

You'll encounter a set of simple to complex problems while building ML models, and you'll not only resolve these problems, but you'll also learn how to build projects based on each problem, with a practical approach and easy-to-follow examples.

The book includes a wide range of applications: from analytics and NLP, to computer vision domains. Some of the applications you will be working on include stock price prediction, a recommendation engine, building a chat-bot, a facial expression recognition system, and many more. The problem examples we cover include identifying the right algorithm for your dataset and use cases, creating and labeling datasets, getting enough clean data to carry out processing, identifying outliers, overftting datasets, hyperparameter tuning, and more. Here, you'll also learn to make more timely and accurate predictions.

In addition, you'll deal with more advanced use cases, such as building a gaming bot, building an extractive summarization tool for medical documents, and you'll also tackle the problems faced while building an ML model. By the end of this book, you'll be able to fine-tune your models as per your needs to deliver maximum productivity.

▶What You Will Learn
⦁ Select the right algorithm to derive the best solution in ML domains
⦁ Perform predictive analysis effciently using ML algorithms
⦁ Predict stock prices using the stock index value
⦁ Perform customer analytics for an e-commerce platform
⦁ Build recommendation engines for various domains
⦁ Build NLP applications for the health domain
⦁ Build language generation applications using different NLP techniques
⦁ Build computer vision applications such as facial emotion recognition

▶Key Features
⦁ Master the advanced concepts, methodologies, and use cases of machine learning
⦁ Build ML applications for analytics, NLP and computer vision domains
⦁ Solve the most common problems in building machine learning models

▶Who This Book Is For
This book is for the intermediate users such as machine learning engineers, data engineers, data scientists, and more, who want to solve simple to complex machine learning problems in their day-to-day work and build powerful and efficient machine learning models. A basic understanding of the machine learning concepts and some experience with Python programming is all you need to get started with this book.

▶What this book covers
⦁ Chapter 1, Credit Risk Modeling, builds the predictive analytics model to help us to predict whether the customer will default the loan or not. We will be using outlier detection, feature transformation, ensemble machine learning algorithms, and so on to get the best possible solution.
⦁ Chapter 2, Stock Market Price Prediction, builds a model to predict the stock index price based on a historical dataset. We will use neural networks to get the best possible solution.
⦁ Chapter 3, Customer Analytics, explores how to build customer segmentation so that marketing campaigns can be done optimally. Using various machine learning algorithms such as K-nearest neighbor, random forest, and so on, we can build the base-line approach. In order to get the best possible solution, we will be using ensemble machine learning algorithms.
⦁ Chapter 4, Recommendation Systems for E-commerce, builds a recommendation engine for e-commerce platform. It can recommend similar books. We will be using concepts such as correlation, TF-IDF, and cosine similarity to build the application.
⦁ Chapter 5, Sentiment Analysis, generates sentiment scores for movie reviews. In order to get the best solution, we will be using recurrent neural networks and Long shortterm memory units.
⦁ Chapter 6, Job Recommendation Engine, is where we build our own dataset, which can be used to make a job recommendation engine. We will also use an already available dataset. We will be using basic statistical techniques to get the best possible solution.
⦁ Chapter 7, Text Summarization, covers an application to generate the extractive summary of a medical transcription. We will be using Python libraries for our base line approach. After that we will be using various vectorization and ranking techniques to get the summary for a medical document. We will also generate a summary for Amazon's product reviews.
⦁ Chapter 8, Developing Chatbots, develops a chatbot using the rule-based approach and deep learning-based approach. We will be using TensorFlow and Keras to build chatbots.
⦁ Chapter 9, Building a Real-Time Object Recognition App, teaches transfer learning. We learn about convolutional networks and YOLO (You Only Look Once) algorithms. We will be using pre-trained models to develop the application.
⦁ Chapter 10, Face Recognition and Face Emotion Recognition, covers an application to recognize human faces. During the second half of this chapter, we will be developing an application that can recognize facial expressions of humans. We will be using OpenCV, Keras, and TensorFlow to build this application.
⦁ Chapter 11, Building Gaming Bots, teaches reinforcement learning. Here, we will be using the gym or universe library to get the gaming environment. We'll first understand the Q-learning algorithm, and later on we will implement the same to train our gaming bot. Here, we are building bot for Atari games.
⦁ Appendix A, List of Cheat Sheets, shows cheat sheets for various Python libraries that we frequently use in data science applications.
⦁ Appendix B, Strategy for Wining Hackathons, tells you what the possible strategy for winning hackathons can be. I have also listed down some of the cool resources that can help you to update yourself.

작가 소개

⦁ Jalaj Thanaki
Jalaj Thanaki is an experienced data scientist with a demonstrated history of working in the information technology, publishing, and finance industries. She is author of the book Python Natural Language Processing, Packt publishing.

Her research interest lies in Natural Language Processing, Machine Learning, Deep Learning, and Big Data Analytics. Besides being a data scientist, Jalaj is also a social activist, traveler, and nature-lover.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 개정2판 | 파인만의 컴퓨터 강의 (리처드 파인만, 서환수)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 요즘 우아한 AI 개발 (우아한형제들)
  • 시스템 설계 면접 완벽 가이드 (지용 탄, 나정호)
  • 조코딩의 AI 비트코인 자동 매매 시스템 만들기 (조동근)
  • 플랫폼 엔지니어링 (이언 놀런드, 카미유 푸르니에)
  • 개정판|혼자 공부하는 파이썬 (윤인성)
  • 이것이 스프링 부트다 with 자바 (김희선)
  • 모던 소프트웨어 엔지니어링 (데이비드 팔리, 박재호)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 멀티패러다임 프로그래밍 (유인동)
  • 개정판 | 혼자 공부하는 머신러닝+딥러닝 (박해선)
  • 파이토치와 유니티 ML-Agents로 배우는 강화학습 [응용편] (민규식, 이현호)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 개정4판 | 스위프트 프로그래밍 (야곰)
  • 러닝 랭체인 (메이오 오신, 누노 캄포스)
  • LLM 엔지니어링 (막심 라본, 폴 이우수틴)
  • 개정판 | 밑바닥부터 시작하는 딥러닝 1 (사이토 고키, 이복연)
  • 최고의 프롬프트 엔지니어링 강의 (김진중)
  • 개정판 | 핸즈온 머신러닝(3판) (오렐리앙 제롱, 박해선)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전