본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

[체험판] Machine Learning Solutions 상세페이지

[체험판] Machine Learning Solutions

Expert techniques to tackle complex machine learning problems using Python

  • 관심 0
소장
판매가
무료
출간 정보
  • 2018.04.27 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 46 쪽
  • 1.2MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781788398893
ECN
-

이 작품의 시리즈더보기

  • [체험판] Machine Learning Solutions (Jalaj Thanaki)
  • Machine Learning Solutions (Jalaj Thanaki)
[체험판] Machine Learning Solutions

작품 정보

▶Book Description
Machine learning (ML) helps you find hidden insights from your data without the need for explicit programming. This book is your key to solving any kind of ML problem you might come across in your job.

You'll encounter a set of simple to complex problems while building ML models, and you'll not only resolve these problems, but you'll also learn how to build projects based on each problem, with a practical approach and easy-to-follow examples.

The book includes a wide range of applications: from analytics and NLP, to computer vision domains. Some of the applications you will be working on include stock price prediction, a recommendation engine, building a chat-bot, a facial expression recognition system, and many more. The problem examples we cover include identifying the right algorithm for your dataset and use cases, creating and labeling datasets, getting enough clean data to carry out processing, identifying outliers, overftting datasets, hyperparameter tuning, and more. Here, you'll also learn to make more timely and accurate predictions.

In addition, you'll deal with more advanced use cases, such as building a gaming bot, building an extractive summarization tool for medical documents, and you'll also tackle the problems faced while building an ML model. By the end of this book, you'll be able to fine-tune your models as per your needs to deliver maximum productivity.

▶What You Will Learn
⦁ Select the right algorithm to derive the best solution in ML domains
⦁ Perform predictive analysis effciently using ML algorithms
⦁ Predict stock prices using the stock index value
⦁ Perform customer analytics for an e-commerce platform
⦁ Build recommendation engines for various domains
⦁ Build NLP applications for the health domain
⦁ Build language generation applications using different NLP techniques
⦁ Build computer vision applications such as facial emotion recognition

▶Key Features
⦁ Master the advanced concepts, methodologies, and use cases of machine learning
⦁ Build ML applications for analytics, NLP and computer vision domains
⦁ Solve the most common problems in building machine learning models

▶Who This Book Is For
This book is for the intermediate users such as machine learning engineers, data engineers, data scientists, and more, who want to solve simple to complex machine learning problems in their day-to-day work and build powerful and efficient machine learning models. A basic understanding of the machine learning concepts and some experience with Python programming is all you need to get started with this book.

▶What this book covers
⦁ Chapter 1, Credit Risk Modeling, builds the predictive analytics model to help us to predict whether the customer will default the loan or not. We will be using outlier detection, feature transformation, ensemble machine learning algorithms, and so on to get the best possible solution.
⦁ Chapter 2, Stock Market Price Prediction, builds a model to predict the stock index price based on a historical dataset. We will use neural networks to get the best possible solution.
⦁ Chapter 3, Customer Analytics, explores how to build customer segmentation so that marketing campaigns can be done optimally. Using various machine learning algorithms such as K-nearest neighbor, random forest, and so on, we can build the base-line approach. In order to get the best possible solution, we will be using ensemble machine learning algorithms.
⦁ Chapter 4, Recommendation Systems for E-commerce, builds a recommendation engine for e-commerce platform. It can recommend similar books. We will be using concepts such as correlation, TF-IDF, and cosine similarity to build the application.
⦁ Chapter 5, Sentiment Analysis, generates sentiment scores for movie reviews. In order to get the best solution, we will be using recurrent neural networks and Long shortterm memory units.
⦁ Chapter 6, Job Recommendation Engine, is where we build our own dataset, which can be used to make a job recommendation engine. We will also use an already available dataset. We will be using basic statistical techniques to get the best possible solution.
⦁ Chapter 7, Text Summarization, covers an application to generate the extractive summary of a medical transcription. We will be using Python libraries for our base line approach. After that we will be using various vectorization and ranking techniques to get the summary for a medical document. We will also generate a summary for Amazon's product reviews.
⦁ Chapter 8, Developing Chatbots, develops a chatbot using the rule-based approach and deep learning-based approach. We will be using TensorFlow and Keras to build chatbots.
⦁ Chapter 9, Building a Real-Time Object Recognition App, teaches transfer learning. We learn about convolutional networks and YOLO (You Only Look Once) algorithms. We will be using pre-trained models to develop the application.
⦁ Chapter 10, Face Recognition and Face Emotion Recognition, covers an application to recognize human faces. During the second half of this chapter, we will be developing an application that can recognize facial expressions of humans. We will be using OpenCV, Keras, and TensorFlow to build this application.
⦁ Chapter 11, Building Gaming Bots, teaches reinforcement learning. Here, we will be using the gym or universe library to get the gaming environment. We'll first understand the Q-learning algorithm, and later on we will implement the same to train our gaming bot. Here, we are building bot for Atari games.
⦁ Appendix A, List of Cheat Sheets, shows cheat sheets for various Python libraries that we frequently use in data science applications.
⦁ Appendix B, Strategy for Wining Hackathons, tells you what the possible strategy for winning hackathons can be. I have also listed down some of the cool resources that can help you to update yourself.

작가 소개

⦁ Jalaj Thanaki
Jalaj Thanaki is an experienced data scientist with a demonstrated history of working in the information technology, publishing, and finance industries. She is author of the book Python Natural Language Processing, Packt publishing.

Her research interest lies in Natural Language Processing, Machine Learning, Deep Learning, and Big Data Analytics. Besides being a data scientist, Jalaj is also a social activist, traveler, and nature-lover.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • AI 에이전트 생태계 (이주환)
  • 헤드 퍼스트 소프트웨어 아키텍처 (라주 간디, 마크 리처드)
  • 깃허브 액션으로 구현하는 실전 CI/CD 설계와 운영 (노무라 도모키, 김완섭)
  • 딥러닝 제대로 이해하기 (사이먼 J. D. 프린스, 고연이)
  • 도커로 구축한 랩에서 혼자 실습하며 배우는 네트워크 프로토콜 입문 (미야타 히로시, 이민성)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 네이처 오브 코드 (자바스크립트판) (다니엘 쉬프만, 윤인성)
  • 현장에서 통하는 도메인 주도 설계 실전 가이드 (마스다 토오루, 타나카 히사테루)
  • 개정판 | Do it! 플러터 앱 개발 & 출시하기 (조준수)
  • 코딩 자율학습 나도코딩의 파이썬 입문 (나도코딩)
  • 모던 리액트 Deep Dive (김용찬)
  • 이게 되네? 클로드 MCP 미친 활용법 27제 (박현규)
  • 지속적 배포 (발렌티나 세르빌, 이일웅)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 딥러닝 프로젝트를 위한 허깅페이스 실전 가이드 (윤대희, 김동화)
  • LLM을 활용한 실전 AI 애플리케이션 개발 (허정준, 정진호)
  • 혼자 공부하는 네트워크 (강민철)
  • 개발자를 넘어 기술 리더로 가는 길 (타냐 라일리, 김그레이스)
  • 도메인 주도 설계 (에릭 에반스, 이대엽)
  • 개정판 | 밑바닥부터 시작하는 딥러닝 1 (사이토 고키, 이복연)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전