본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Hands-On Data Analysis with Pandas 상세페이지

Hands-On Data Analysis with Pandas

Efficiently perform data collection, wrangling, analysis, and visualization using Python

  • 관심 0
소장
전자책 정가
25,000원
판매가
25,000원
출간 정보
  • 2019.07.26 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 702 쪽
  • 16.7MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781789612806
ECN
-
Hands-On Data Analysis with Pandas

작품 정보

▶Book Description
Data analysis has become a necessary skill in a variety of positions where knowing how to work with data and extract insights can generate significant value.

Hands-On Data Analysis with Pandas will show you how to analyze your data, get started with machine learning, and work effectively with Python libraries often used for data science, such as pandas, NumPy, matplotlib, seaborn, and scikit-learn. Using real-world datasets, you will learn how to use the powerful pandas library to perform data wrangling to reshape, clean, and aggregate your data. Then, you will learn how to conduct exploratory data analysis by calculating summary statistics and visualizing the data to find patterns. In the concluding chapters, you will explore some applications of anomaly detection, regression, clustering, and classification, using scikit-learn, to make predictions based on past data.

By the end of this book, you will be equipped with the skills you need to use pandas to ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets.

▶What You Will Learn
- Understand how data analysts and scientists gather and analyze data
- Perform data analysis and data wrangling in Python
- Combine, group, and aggregate data from multiple sources
- Create data visualizations with pandas, matplotlib, and seaborn
- Apply machine learning (ML) algorithms to identify patterns and make predictions
- Use Python data science libraries to analyze real-world datasets
- Use pandas to solve common data representation and analysis problems
- Build Python scripts, modules, and packages for reusable analysis code

▶Key Features
- Perform efficient data analysis and manipulation tasks using pandas
- Apply pandas to different real-world domains using step-by-step demonstrations
- Get accustomed to using pandas as an effective data exploration tool

▶Who This Book Is For
This book is for data analysts, data science beginners, and Python developers who want to explore each stage of data analysis and scientific computing using a wide range of datasets. You will also find this book useful if you are a data scientist who is looking to implement pandas in machine learning. Working knowledge of Python programming language will be beneficial.

▶What this book covers
- Chapter 1, Introduction to Data Analysis, teaches you the fundamentals of data analysis, gives you a foundation in statistics, and guides you through getting your environment set up for working with data in Python and using Jupyter Notebooks.

- Chapter 2, Working with Pandas DataFrames, introduces you to the pandas library and shows you the basics of working with DataFrames.

- Chapter 3, Data Wrangling with Pandas, discusses the process of data manipulation, shows you how to explore an API to gather data, and guides you through data cleaning and reshaping with pandas.

- Chapter 4, Aggregating Pandas DataFrames, teaches you how to query and merge DataFrames, perform complex operations on them, including rolling calculations and aggregations, and how to work effectively with time series data.

- Chapter 5, Visualizing Data with Pandas and Matplotlib, shows you how to create your own data visualizations in Python, first using the matplotlib library, and then from pandas objects directly.

- Chapter 6, Plotting with Seaborn and Customization Techniques, continues the discussion on data visualization by teaching you how to use the seaborn library to visualize your longform data and giving you the tools you need to customize your visualizations, making them presentation-ready.

- Chapter 7, Financial Analysis – Bitcoin and the Stock Market, walks you through the creation of a Python package for analyzing stocks, building upon everything learned from Chapter 1, Introduction to Data Analysis, through Chapter 6, Plotting with Seaborn and Customization Techniques, and applying it to a financial application.

- Chapter 8, Rule-Based Anomaly Detection, covers simulating data and applying everything learned from Chapter 1, Introduction to Data Analysis, through Chapter 6, Plotting with Seaborn and Customization Techniques, to catch hackers attempting to authenticate to a website, using rule-based strategies for anomaly detection.

- Chapter 9, Getting Started with Machine Learning in Python, introduces you to machine learning and building models using the scikit-learn library.

- Chapter 10, Making Better Predictions – Optimizing Models, shows you strategies for tuning and improving the performance of your machine learning models.

- Chapter 11, Machine Learning Anomaly Detection, revisits anomaly detection on login attempt data, using machine learning techniques, all while giving you a taste of how the workflow looks in practice.

- Chapter 12, The Road Ahead, contains resources for taking your skills to the next level and further avenues for exploration.

작가 소개

▶About the Author
- Stefanie Molin
Stefanie Molin is a data scientist and software engineer at Bloomberg LP in NYC, tackling tough problems in information security, particularly revolving around anomaly detection, building tools for gathering data, and knowledge sharing. She has extensive experience in data science, designing anomaly detection solutions, and utilizing machine learning in both R and Python in the AdTech and FinTech industries. She holds a B.S. in operations research from Columbia University's Fu Foundation School of Engineering and Applied Science, with minors in economics, and entrepreneurship and innovation. In her free time, she enjoys traveling the world, inventing new recipes, and learning new languages spoken among both people and computers.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • AI 에이전트 인 액션 (마이클 래넘, 류광)
  • 코드 너머, 회사보다 오래 남을 개발자 (김상기, 배문교)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 모던 소프트웨어 엔지니어링 (데이비드 팔리, 박재호)
  • 객체지향 시스템 디자인 원칙 (마우리시오 아니체, 오현석)
  • 시스템 설계 면접 완벽 가이드 (지용 탄, 나정호)
  • 요즘 우아한 AI 개발 (우아한형제들)
  • 최고의 프롬프트 엔지니어링 강의 (김진중)
  • 개정2판 | 시작하세요! 도커/쿠버네티스 (용찬호)
  • 테디노트의 랭체인을 활용한 RAG 비법노트_기본편 (이경록(테디노트))
  • 핸즈온 생성형 AI (오마르 산세비에로, 페드로 쿠엥카)
  • 개정2판 | 파인만의 컴퓨터 강의 (리처드 파인만, 서환수)
  • LLM 인 프로덕션 (크리스토퍼 브루소, 매슈 샤프)
  • 랭체인과 랭그래프로 구현하는 RAG・AI 에이전트 실전 입문 (니시미 마사히로, 요시다 신고)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 멀티패러다임 프로그래밍 (유인동)
  • 개정판 | 밑바닥부터 시작하는 딥러닝 1 (사이토 고키, 이복연)
  • 오브젝트 (조영호)
  • 밑바닥부터 시작하는 딥러닝 3 (사이토 고키, 이복연)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전