본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Hands-On Deep Learning Algorithms with Python 상세페이지

Hands-On Deep Learning Algorithms with Python

Master deep learning algorithms with extensive math by implementing them using TensorFlow

  • 관심 0
소장
전자책 정가
19,000원
판매가
19,000원
출간 정보
  • 2019.07.25 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 498 쪽
  • 44.2MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781789344516
ECN
-
Hands-On Deep Learning Algorithms with Python

작품 정보

▶What You Will Learn
- Implement basic-to-advanced deep learning algorithms
- Master the mathematics behind deep learning algorithms
- Become familiar with gradient descent and its variants, such as AMSGrad, AdaDelta, Adam, and Nadam
- Implement recurrent networks, such as RNN, LSTM, GRU, and seq2seq models
- Understand how machines interpret images using CNN and capsule networks
- Implement different types of generative adversarial network, such as CGAN, CycleGAN, and StackGAN
- Explore various types of autoencoder, such as Sparse autoencoders, DAE, CAE, and VAE

▶Key Features
- Get up-to-speed with building your own neural networks from scratch
- Gain insights into the mathematical principles behind deep learning algorithms
- Implement popular deep learning algorithms such as CNNs, RNNs, and more using TensorFlow

▶Who This Book Is For
If you are a machine learning engineer, data scientist, AI developer, or simply want to focus on neural networks and deep learning, this book is for you. Those who are completely new to deep learning, but have some experience in machine learning and Python programming, will also find the book very helpful.

▶What this book covers
- Chapter 1, Introduction to Deep Learning, explains the fundamentals of deep learning and helps us to understand what artificial neural networks are and how they learn. We will also learn to build our first artificial neural network from scratch.

- Chapter 2, Getting to Know TensorFlow, helps us to understand one of the most powerful and popular deep learning libraries called TensorFlow. You will understand several important functionalities of TensorFlow and how to build neural networks using TensorFlow to perform handwritten digits classification.

- Chapter 3, Gradient Descent and Its Variants, provides an in-depth understanding of gradient descent algorithm. We will explore several variants of gradient descent algorithm such as SGD, Adagrad, ADAM, Adadelta, Nadam, and many more and learn how to implement them from scratch.

- Chapter 4, Generating Song Lyrics Using RNN, describes how an RNN is used to model sequential datasets and how it remembers the previous input. We will begin by getting a basic understanding of RNN then we will deep dive into its math. Next, we will learn how to implement RNN in TensorFlow for generating song lyrics.

- Chapter 5, Improvements to the RNN, begins by exploring LSTM and how exactly LSTM overcomes the shortcomings of RNN. Later, we will learn about GRU cell and how bidirectional RNN and deep RNN work. At the end of the chapter, we will learn how to perform language translation using seq2seq model.

- Chapter 6, Demystifying Convolutional Networks, helps us to master how convolutional neural networks work. We will explore how forward and backpropagation of CNNs work mathematically. We will also learn about various architectures of CNN and Capsule networks and implement them in TensorFlow.

- Chapter 7, Learning Text Representations, covers the state-of-the-art text representation learning algorithm known as word2vec. We will explore how different types of word2vec models such as CBOW and skip-gram work mathematically. We will also learn how to visualize the word embeddings using TensorBoard. Later we will learn about doc2vec, skip-thoughts and quick-thoughts models for learning the sentence representations.

- Chapter 8, Generating Images Using GANs, helps us to understand one of the most popular generative algorithms called GAN. We will learn how to implement GAN in TensorFlow to generate images. We will also explore different types of GANs such as LSGAN and WGAN.

- Chapter 9, Learning More about GANs, uncovers various interesting different types of GANs. First, we will learn about CGAN, which conditions the generator and discriminator. Then we see how to implement InfoGAN in TensorFlow. Moving on, we will learn to convert photos to paintings using CycleGAN and how to convert text descriptions to photos using StackGANs.

- Chapter 10, Reconstructing Inputs Using Autoencoders, describes how autoencoders learn to reconstruct the input. We will explore and learn to implement different types of autoencoders such as convolutional autoencoders, sparse autoencoders, contractive autoencoders, variational autoencoders, and more in TensorFlow.

- Chapter 11, Exploring Few-Shot Learning Algorithms, describes how to build models to learn from a few data points. We will learn what is few-shot learning and explore popular fewshot learning algorithms such as siamese, prototypical, relation, and matching networks.

작가 소개

▶About the Author
- Sudharsan Ravichandiran
Sudharsan Ravichandiran is a data scientist, researcher, Artificial Intelligence enthusiast, and YouTuber (search for "Sudharsan reinforcement learning"). He completed his Bachelor's in Information Technology at Anna University. His area of research focuses on practical implementations of deep learning and reinforcement learning, including Natural Language Processing and computer vision. He is an open source contributor and loves answering questions on Stack Overflow. He also authored a best-seller, Hands-On Reinforcement Learning with Python, published by Packt Publishing.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • AI 에이전트 인 액션 (마이클 래넘, 류광)
  • 객체지향 시스템 디자인 원칙 (마우리시오 아니체, 오현석)
  • 코드 너머, 회사보다 오래 남을 개발자 (김상기, 배문교)
  • 테디노트의 랭체인을 활용한 RAG 비법노트_기본편 (이경록(테디노트))
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 개정2판 | 시작하세요! 도커/쿠버네티스 (용찬호)
  • 개정2판 | 파인만의 컴퓨터 강의 (리처드 파인만, 서환수)
  • 시스템 설계 면접 완벽 가이드 (지용 탄, 나정호)
  • 모던 소프트웨어 엔지니어링 (데이비드 팔리, 박재호)
  • 멀티패러다임 프로그래밍 (유인동)
  • 개정판 | 밑바닥부터 시작하는 딥러닝 1 (사이토 고키, 이복연)
  • 최고의 프롬프트 엔지니어링 강의 (김진중)
  • 소문난 명강의: 소플의 처음 만난 Next.js (이인제)
  • 따라 하며 배우는 유니티 게임 개발 (아라카와 다쿠야, 아사노 유이치)
  • 핸즈온 생성형 AI (오마르 산세비에로, 페드로 쿠엥카)
  • LLM 인 프로덕션 (크리스토퍼 브루소, 매슈 샤프)
  • 랭체인과 랭그래프로 구현하는 RAG・AI 에이전트 실전 입문 (니시미 마사히로, 요시다 신고)
  • 이것이 스프링 부트다 with 자바 (김희선)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전