본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Hands-On Deep Learning Algorithms with Python 상세페이지

Hands-On Deep Learning Algorithms with Python

Master deep learning algorithms with extensive math by implementing them using TensorFlow

  • 관심 0
소장
전자책 정가
19,000원
판매가
19,000원
출간 정보
  • 2019.07.25 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 498 쪽
  • 44.2MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781789344516
ECN
-
Hands-On Deep Learning Algorithms with Python

작품 정보

▶What You Will Learn
- Implement basic-to-advanced deep learning algorithms
- Master the mathematics behind deep learning algorithms
- Become familiar with gradient descent and its variants, such as AMSGrad, AdaDelta, Adam, and Nadam
- Implement recurrent networks, such as RNN, LSTM, GRU, and seq2seq models
- Understand how machines interpret images using CNN and capsule networks
- Implement different types of generative adversarial network, such as CGAN, CycleGAN, and StackGAN
- Explore various types of autoencoder, such as Sparse autoencoders, DAE, CAE, and VAE

▶Key Features
- Get up-to-speed with building your own neural networks from scratch
- Gain insights into the mathematical principles behind deep learning algorithms
- Implement popular deep learning algorithms such as CNNs, RNNs, and more using TensorFlow

▶Who This Book Is For
If you are a machine learning engineer, data scientist, AI developer, or simply want to focus on neural networks and deep learning, this book is for you. Those who are completely new to deep learning, but have some experience in machine learning and Python programming, will also find the book very helpful.

▶What this book covers
- Chapter 1, Introduction to Deep Learning, explains the fundamentals of deep learning and helps us to understand what artificial neural networks are and how they learn. We will also learn to build our first artificial neural network from scratch.

- Chapter 2, Getting to Know TensorFlow, helps us to understand one of the most powerful and popular deep learning libraries called TensorFlow. You will understand several important functionalities of TensorFlow and how to build neural networks using TensorFlow to perform handwritten digits classification.

- Chapter 3, Gradient Descent and Its Variants, provides an in-depth understanding of gradient descent algorithm. We will explore several variants of gradient descent algorithm such as SGD, Adagrad, ADAM, Adadelta, Nadam, and many more and learn how to implement them from scratch.

- Chapter 4, Generating Song Lyrics Using RNN, describes how an RNN is used to model sequential datasets and how it remembers the previous input. We will begin by getting a basic understanding of RNN then we will deep dive into its math. Next, we will learn how to implement RNN in TensorFlow for generating song lyrics.

- Chapter 5, Improvements to the RNN, begins by exploring LSTM and how exactly LSTM overcomes the shortcomings of RNN. Later, we will learn about GRU cell and how bidirectional RNN and deep RNN work. At the end of the chapter, we will learn how to perform language translation using seq2seq model.

- Chapter 6, Demystifying Convolutional Networks, helps us to master how convolutional neural networks work. We will explore how forward and backpropagation of CNNs work mathematically. We will also learn about various architectures of CNN and Capsule networks and implement them in TensorFlow.

- Chapter 7, Learning Text Representations, covers the state-of-the-art text representation learning algorithm known as word2vec. We will explore how different types of word2vec models such as CBOW and skip-gram work mathematically. We will also learn how to visualize the word embeddings using TensorBoard. Later we will learn about doc2vec, skip-thoughts and quick-thoughts models for learning the sentence representations.

- Chapter 8, Generating Images Using GANs, helps us to understand one of the most popular generative algorithms called GAN. We will learn how to implement GAN in TensorFlow to generate images. We will also explore different types of GANs such as LSGAN and WGAN.

- Chapter 9, Learning More about GANs, uncovers various interesting different types of GANs. First, we will learn about CGAN, which conditions the generator and discriminator. Then we see how to implement InfoGAN in TensorFlow. Moving on, we will learn to convert photos to paintings using CycleGAN and how to convert text descriptions to photos using StackGANs.

- Chapter 10, Reconstructing Inputs Using Autoencoders, describes how autoencoders learn to reconstruct the input. We will explore and learn to implement different types of autoencoders such as convolutional autoencoders, sparse autoencoders, contractive autoencoders, variational autoencoders, and more in TensorFlow.

- Chapter 11, Exploring Few-Shot Learning Algorithms, describes how to build models to learn from a few data points. We will learn what is few-shot learning and explore popular fewshot learning algorithms such as siamese, prototypical, relation, and matching networks.

작가 소개

▶About the Author
- Sudharsan Ravichandiran
Sudharsan Ravichandiran is a data scientist, researcher, Artificial Intelligence enthusiast, and YouTuber (search for "Sudharsan reinforcement learning"). He completed his Bachelor's in Information Technology at Anna University. His area of research focuses on practical implementations of deep learning and reinforcement learning, including Natural Language Processing and computer vision. He is an open source contributor and loves answering questions on Stack Overflow. He also authored a best-seller, Hands-On Reinforcement Learning with Python, published by Packt Publishing.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • AI 에이전트 생태계 (이주환)
  • 헤드 퍼스트 소프트웨어 아키텍처 (라주 간디, 마크 리처드)
  • 깃허브 액션으로 구현하는 실전 CI/CD 설계와 운영 (노무라 도모키, 김완섭)
  • 현장에서 통하는 도메인 주도 설계 실전 가이드 (마스다 토오루, 타나카 히사테루)
  • 딥러닝 제대로 이해하기 (사이먼 J. D. 프린스, 고연이)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 네이처 오브 코드 (자바스크립트판) (다니엘 쉬프만, 윤인성)
  • 도커로 구축한 랩에서 혼자 실습하며 배우는 네트워크 프로토콜 입문 (미야타 히로시, 이민성)
  • 개정판 | Do it! 플러터 앱 개발 & 출시하기 (조준수)
  • 모던 리액트 Deep Dive (김용찬)
  • 그로킹 동시성 (키릴 보브로프, 심효섭)
  • 해커톤 (노아론)
  • LLM과 RAG로 구현하는 AI 애플리케이션 (에디유, 대니얼김)
  • 이게 되네? 클로드 MCP 미친 활용법 27제 (박현규)
  • 개정2판 | 시작하세요! 도커/쿠버네티스 (용찬호)
  • 개정2판 | 파인만의 컴퓨터 강의 (리처드 파인만, 서환수)
  • npm Deep Dive (전유정, 김용찬)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 딥러닝 프로젝트를 위한 허깅페이스 실전 가이드 (윤대희, 김동화)
  • 한 권으로 배우는 게임 프로그래밍 (박태준, 박효재)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전