본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Hands-On Neural Networks 상세페이지

Hands-On Neural Networks

Learn how to build and train your first neural network model using Python

  • 관심 0
소장
전자책 정가
15,000원
판매가
15,000원
출간 정보
  • 2019.05.30 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 269 쪽
  • 22.5MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781788999885
ECN
-
Hands-On Neural Networks

작품 정보

▶What You Will Learn
- Learn how to train a network by using backpropagation
- Discover how to load and transform images for use in neural networks
- Study how neural networks can be applied to a varied set of applications
- Solve common challenges faced in neural network development
- Understand the transfer learning concept to solve tasks using Keras and Visual Geometry Group (VGG) network
- Get up to speed with advanced and complex deep learning concepts like LSTMs and NLP
- Explore innovative algorithms like GANs and deep reinforcement learning

▶Key Features
- Explore neural network architecture and understand how it functions
- Learn algorithms to solve common problems using back propagation and perceptrons
- Understand how to apply neural networks to applications with the help of useful illustrations

▶Who This Book Is For
If you are interested in artificial intelligence and deep learning and want to further your skills, then this intermediate-level book is for you. Some knowledge of statistics will help you get the most out of this book.

▶What this book covers
- Chapter 1, Getting Started with Supervised Learning, covers the big picture of AI and, in particular, deep learning. This chapter introduces the main machine learning concepts, from transforming data to evaluating results. These concepts will be useful in the following chapters, where we will focus only on deep learning applications.

- Chapter 2, Neural Network Fundamentals, introduces the building blocks of deep learning and the math behind them. We will also explore concepts such as the perceptron and gradient descent, and the math behind them. We will then see how it's possible to use them to build neural networks with an example, to solve a classification task.

- Chapter 3, Convolutional Neural Networks for Image Processing, covers more complex network architectures for solving domain-specific problems. In particular, we will look at some techniques for solving some computer vision problems. We will also see how a pretrained network can reduce the time needed to create and train a neural network.

- Chapter 4, Exploiting Text Embedding, shows how deep learning can be used for NLP tasks; in particular, how we can use embeddings to process textual data, the theory behind them, and some practical use cases.

- Chapter 5, Working with RNNs, introduces a more sophisticated type of network, RNNs, and the math and the concepts behind them. In particular, we will focus on LSTM and how it can be used to solve an NLP problem.

- Chapter 6, Reusing Neural Networks with Transfer Learning, introduces transfer learning, which is the ability of a model to generalize its learning to different tasks than the one it was trained to solve. We will also look at a concrete example of transfer learning using a pre-trained network to solve our particular problem using Keras and the famous VGG network.

- Chapter 7, Working with Generative Algorithms, introduces one of the most innovative concepts in machine learning in the past decade: GANs. We will see how they work and the math behind them. We will also present an example of how to implement a GAN to generate simple handwritten digits.

- Chapter 8, Implementing Autoencoders, talks about autoencoders, what they are, the math behind them, and which tasks they can solve. In particular, we will look at improvements to the simple autoencoders algorithm and how it's possible to use autoencoders to generate simple handwritten digits with Keras.

- Chapter 9, Deep Belief Networks, talks about Deep Belief Networks (DBNs), what they are, the math behind them, and which tasks they can solve.

- Chapter 10, Reinforcement Learning, introduces RL, starting from the basic concepts, such as the Monte Carlo and Markov chain methods. We will then explain traditional RL methods and how deep learning has improved and revitalized the field.

- Chapter 11, What’s Next?, introduces a quick summary of all the topics that we have covered in the book. We will also provide readers with the details of other titles that could be used as reference materials. Lastly, we will also include the latest advancements that readers can look at in the field of neural networks.

작가 소개

▶About the Author
- Leonardo De Marchi
Leonardo De Marchi is an international speaker, author and consultant. He holds a masters in artificial intelligence (AI) and has worked as a data scientist in the sporting world, with clients such as New York Knicks, Manchester United. He now works as a head of data scientist at Badoo, the largest dating site with over 400 million users. He is also the lead instructor at ideai.io, a company specialized in Machine Learning trainings. With Ideai he provides technical and managerial training to large institutions and dynamic startups. He is also a contractor for the European Commission.

- Laura Mitchell
Laura Mitchell graduated with a degree in mathematics from the University of Edinburgh and, since then, has gained over 12 years' experience in the tech and data science space. She is currently lead data scientist at Badoo, which is the largest online dating site in the world with over 400 million users worldwide. Laura has hands-on experience in the delivery of projects such as NLP, image classification, and recommender systems, from initial conception through to production. She has a passion for learning new technologies and keeping up to date with industry trends.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 개정2판 | 파인만의 컴퓨터 강의 (리처드 파인만, 서환수)
  • 요즘 우아한 AI 개발 (우아한형제들)
  • 시스템 설계 면접 완벽 가이드 (지용 탄, 나정호)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 조코딩의 AI 비트코인 자동 매매 시스템 만들기 (조동근)
  • 개정판|혼자 공부하는 파이썬 (윤인성)
  • 모던 소프트웨어 엔지니어링 (데이비드 팔리, 박재호)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 멀티패러다임 프로그래밍 (유인동)
  • 개정판 | 혼자 공부하는 머신러닝+딥러닝 (박해선)
  • 플랫폼 엔지니어링 (이언 놀런드, 카미유 푸르니에)
  • 인공지능, 주식분석 좀 부탁해 (곽경일)
  • 파이토치와 유니티 ML-Agents로 배우는 강화학습 [응용편] (민규식, 이현호)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 개정4판 | 스위프트 프로그래밍 (야곰)
  • 러닝 랭체인 (메이오 오신, 누노 캄포스)
  • LLM 엔지니어링 (막심 라본, 폴 이우수틴)
  • 개정판 | 밑바닥부터 시작하는 딥러닝 1 (사이토 고키, 이복연)
  • 개정판 | 핸즈온 머신러닝(3판) (오렐리앙 제롱, 박해선)
  • 개발자를 위한 글쓰기 가이드 (유영경)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전