본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Mastering Machine Learning on AWS 상세페이지

Mastering Machine Learning on AWS

Advanced machine learning in Python using SageMaker, Apache Spark, and TensorFlow

  • 관심 0
소장
전자책 정가
19,000원
판매가
19,000원
출간 정보
  • 2019.05.20 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 293 쪽
  • 19.6MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781789347500
ECN
-
Mastering Machine Learning on AWS

작품 정보

▶What You Will Learn
- Manage AI workflows by using AWS cloud to deploy services that feed smart data products
- Use SageMaker services to create recommendation models
- Scale model training and deployment using Apache Spark on EMR
- Understand how to cluster big data through EMR and seamlessly integrate it with SageMaker
- Build deep learning models on AWS using TensorFlow and deploy them as services
- Enhance your apps by combining Apache Spark and Amazon SageMaker

▶Key Features
- Build machine learning apps on Amazon Web Services (AWS) using SageMaker, Apache Spark and TensorFlow
- Learn model optimization, and understand how to scale your models using simple and secure APIs
- Develop, train, tune and deploy neural network models to accelerate model performance in the cloud

▶Who This Book Is For
This book is for data scientists, machine learning developers, deep learning enthusiasts and AWS users who want to build advanced models and smart applications on the cloud using AWS and its integration services. Some understanding of machine learning concepts, Python programming and AWS will be beneficial.

▶What this book covers
- Chapter 1, Getting Started with Machine Learning for AWS, introduces machine learning to the readers. It explains why it is necessary for data scientists to learn about machine learning and how AWS can help them to solve various real-world problems. We also discuss the AWS services and tools that we will be covered in the book.

- Chapter 2, Classifying Twitter Feeds with Naive Bayes, introduces the basics of the Naive Bayes algorithm and presents a text classification problem that will be addressed by the use of this algorithm and language models. We'll provide examples explaining how to apply Naive Bayes using scikit-learn and Apache Spark on SageMaker's BlazingText. Additionally, we'll explore how to use the ideas behind Bayesian reasoning in more complex scenarios. We will use the Twitter API to stream tweets from two different political candidates and predict who wrote them. We will use scikit-learn, Apache Spark, SageMaker, and BlazingText.

- Chapter 3, Predicting House Value with Regression Algorithms, introduces the basics of regression algorithms and applies them to predict the price of houses given a number of features. We'll also introduce how to use logistic regression for classification problems. Examples in SageMaker for scikit-learn and Apache Spark will be provided. We'll be using the Boston Housing Price dataset https://www.kaggle.com/c/boston-housing/ , along with scikit-learn, Apache Spark, and SageMaker.

- Chapter 4, Predicting User Behavior with Tree-Based Methods, introduces decision trees, random forests, and gradient boosted trees. We will explore how to use these algorithms to predict when users will click on ads. Additionally, we will explain how to use AWS EMR and Apache Spark to engineer models at a large scale. We will use the Adform click prediction dataset (https://doi.org/10.7910/DVN/ TADBY7, Harvard Dataverse, V2). We will use the xgboost, Apache Spark, SageMaker, and EMR libraries.

- Chapter 5, Customer Segmentation Using Clustering Algorithms, introduces the main clustering algorithms by exploring how to apply them for customer segmentation based on consumer patterns. Through AWS SageMaker, we will show how to run these algorithms in skicit-learn and Apache Spark. We will use the e-commerce data from Fabien Daniel (https://www.kaggle.com/fabiendaniel/customer-segmentation/data) and scikit-learn, Apache Spark, and SageMaker.

- Chapter 6, Analyzing Visitor Patterns to Make Recommendations, presents the problem of finding similar users based on their navigation patterns in order to recommend custom marketing strategies. Collaborative filtering and distance-based methods will be introduced with examples in scikit-learn and Apache Spark on AWS SageMaker. We will use Kwan Hui Lim's Theme Park Attraction Visits Dataset (https://sites.google.com/site/limkwanhui/datacode), Apache Spark, and SageMaker.

- Chapter 7, Implementing Deep Learning Algorithms, introduces the reader to the main concepts behind deep learning and explains why it has become so relevant in today's AIpowered products. The aim of this chapter is to not discuss the theoretical details of deep learning, but to explain the algorithms with examples and provide a high-level conceptual understanding of deep learning algorithms. This will give the readers a platform to understand what they are implementing in the next chapters.

- Chapter 8, Implementing Deep Learning with TensorFlow on AWS, goes through a series of practical image-recognition problems and explains how to address them with TensorFlow on AWS. TensorFlow is a very popular deep learning framework that can be used to train deep neural networks. This chapter will explain how TensorFlow can be installed by readers and used to train deep learning models using toy datasets. In this chapter, we'll use the MNIST handwritten digits dataset (http://yann.lecun.com/exdb/mnist/), along with TensorFlow and SageMaker.

- Chapter 9, Image Classification and Detection with SageMaker, revisits the image classification problem we dealt with in the previous chapters, but using SageMaker's image classification algorithm and object detection algorithm. We'll use the following datasets:
‣Caltech256 (http:// www.vision.caltech.edu/Image_Datasets/Caltech256/)
We'll also use AWS Sagemaker.

- Chapter 10, Working with AWS Comprehend, explains the functionality of an AWS tool called Comprehend, which is an NLP tool that performs various useful tasks.

- Chapter 11, Using AWS Rekognition, explains how to use Rekognition, which is an image recognition tool that uses deep learning. The readers will learn an easy way of applying image recognition in their applications.

- Chapter 12, Building Conversational Interfaces Using AWS Lex, explains that AWS Lex is a tool that allows programmers to build conversational interfaces. This chapter introduces the readers to topics such as natural language understanding using deep learning.

- Chapter 13, Creating Clusters on AWS, discusses that one of the key problems in deep learning is understanding how to scale and parallelize learning on multiple machines. In this chapter, we'll examine different ways to create clusters of learners. In particular, we'll focus on how to parallelize deep learning pipelines through distributed TensorFlow and Apache Spark.

- Chapter 14, Optimizing Models in Spark and SageMaker, explains that the models that are trained on AWS can be further optimized to run smoothly in production environments. In this section, we will discuss various tricks that our readers can use to improve the performance of their algorithms.

- Chapter 15, Tuning Clusters for Machine Learning, explains that many data scientists and machine learning practitioners face the problem of scale when attempting to run machine learning data pipelines at scale. In this chapter, we focus primarily on EMR, which is a very powerful tool for running very large machine learning jobs. There are many ways to configure EMR, and not every setup works for every scenario. We will go through the main configurations of EMR and explain how each configuration works for different objectives. Additionally, we'll present other ways to run big data pipelines through AWS.

- Chapter 16, Deploying Models Built on AWS, discusses deployment. At this point, readers will have their models built on AWS and would like to ship them to production. We understand that there are a variety of different contexts in which models should be deployed. In some cases, it's as easy as generating a CSV of actions that would be fed to some system. Often, we just need to deploy a web service that's capable of making predictions. However, there are many times in which we need to deploy these models to complex, low-latency, or edge systems. We will go through the different ways you can deploy machine learning models to production.

작가 소개

▶About the Author
- Dr. Saket S.R. Mengle
Dr. Saket S.R. Mengle holds a PhD in text mining from Illinois Institute of Technology, Chicago. He has worked in a variety of fields, including text classification, information retrieval, large-scale machine learning, and linear optimization. He currently works as senior principal data scientist at dataxu, where he is responsible for developing and maintaining the algorithms that drive dataxu's real-time advertising platform.

- Maximo Gurmendez
Maximo Gurmendez holds a master's degree in computer science/AI from Northeastern University, where he attended as a Fulbright Scholar. Since 2009, he has been working with dataxu as data science engineering lead. He's also the founder of Montevideo Labs (a data science and engineering consultancy). Additionally, Maximo is a computer science professor at the University of Montevideo and is director of its data science for business program.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 개정2판 | 파인만의 컴퓨터 강의 (리처드 파인만, 서환수)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 시스템 설계 면접 완벽 가이드 (지용 탄, 나정호)
  • 모던 소프트웨어 엔지니어링 (데이비드 팔리, 박재호)
  • LLM 엔지니어링 (막심 라본, 폴 이우수틴)
  • 요즘 우아한 AI 개발 (우아한형제들)
  • 인공지능, 주식분석 좀 부탁해 (곽경일)
  • npm Deep Dive (전유정, 김용찬)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 개정4판 | 스위프트 프로그래밍 (야곰)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 조코딩의 AI 비트코인 자동 매매 시스템 만들기 (조동근)
  • 멀티패러다임 프로그래밍 (유인동)
  • 최고의 프롬프트 엔지니어링 강의 (김진중)
  • 핸즈온 생성형 AI (오마르 산세비에로, 페드로 쿠엥카)
  • 개발자를 위한 IT 영어 온보딩 가이드 (장진호)
  • 파이토치와 유니티 ML-Agents로 배우는 강화학습 [응용편] (민규식, 이현호)
  • 실전 ComfyUI (우희철)
  • 개정판 | 혼자 공부하는 머신러닝+딥러닝 (박해선)
  • 개정판 | 밑바닥부터 시작하는 딥러닝 1 (사이토 고키, 이복연)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전