본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

[체험판] Learning Apache Apex 상세페이지

[체험판] Learning Apache Apex

Real-time streaming applications with Apex

  • 관심 0
소장
판매가
무료
출간 정보
  • 2017.11.30 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 28 쪽
  • 13.3MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781788294119
ECN
-

이 작품의 시리즈더보기

  • [체험판] Learning Apache Apex (Thomas Weise, Munagala V. Rama)
  • Learning Apache Apex (Thomas Weise, Munagala V. Rama)
[체험판] Learning Apache Apex

작품 정보

▶Book Description
Apache Apex is a next-generation stream processing framework designed to operate on data at large scale, with minimum latency, maximum reliability, and strict correctness guarantees.

Half of the book consists of Apex applications, showing you key aspects of data processing pipelines such as connectors for sources and sinks, and common data transformations. The other half of the book is evenly split into explaining the Apex framework, and tuning, testing, and scaling Apex applications.

Much of our economic world depends on growing streams of data, such as social media feeds, financial records, data from mobile devices, sensors and machines (the Internet of Things - IoT). The projects in the book show how to process such streams to gain valuable, timely, and actionable insights. Traditional use cases, such as ETL, that currently consume a significant chunk of data engineering resources are also covered.

The final chapter shows you future possibilities emerging in the streaming space, and how Apache Apex can contribute to it.

▶What You Will Learn
⦁ Put together a functioning Apex application from scratch
⦁ Scale an Apex application and configure it for optimal performance
⦁ Understand how to deal with failures via the fault tolerance features of the platform
⦁ Use Apex via other frameworks such as Beam
⦁ Understand the DevOps implications of deploying Apex

▶Key Features
⦁ Get a clear, practical approach to real-time data processing
⦁ Program Apache Apex streaming applications
⦁ This book shows you Apex integration with the open source Big Data ecosystem

▶Who This Book Is For
This book assumes knowledge of application development with Java and familiarity with distributed systems. Familiarity with other real-time streaming frameworks is not required, but some practical experience with other big data processing utilities might be helpful.

▶Style and approach
This book is divided into two major parts: first it explains what Apex is, what its relevant parts are, and how to write well-built Apex applications. The second part is entirely application-driven, walking you through Apex applications of increasing complexity.

▶What this book covers
⦁ Chapter 1, Introduction to Apex, tells us how processing of data-in-motion is realized by Apache Apex. It also gives us a few Apex stream processing use cases and applications, and talks about their value propositions.
⦁ Chapter 2, Getting Started with Application Development, shows us how the Apex development process works from project creation to application deployment; the result is a simple working application.
⦁ Chapter 3, The Apex Library, talks about the Malhar library, which contains functional building blocks for writing real-world Apex applications.
⦁ Chapter 4, Scalability, Low Latency, and Performance, teaches us how Apex can scale and parallize processing, how to achieve dynamic scaling and better resource allocation in general, and why low latency and high throughput are both achievable without trading one off against the other. Operator partitioning and related techniques are central to this endeavor and are shown in practice in a sample application.
⦁ Chapter 5, Fault Tolerance and Reliability, explores the implementation of fault-tolerance and reliability in Apex including exactly-once semantics via distributed checkpointing and effective state management.
⦁ Chapter 6, Example Project –. Real-Time Aggregation and Visualization, puts together all the building blocks to show a streaming analytics project and how to integrate it with a UI and existing infrastructure.
⦁ Chapter 7, Example Project –. Real-Time Ride Service Data Processing, relies on a historical dataset to simulate a real-time ride service data stream. We are using event time and out-oforder processing, in particular, to build a simple analytics application that can serve as a template for more complicated event stream data pipelines.
⦁ Chapter 8, Example Project –. ETL Using SQL, shows how to build a classic ETL application using Apex and Apache Calcite.
⦁ Chapter 9, Introduction to Apache Beam, introduces the Beam stream processing framework and an approach that allows a stream application engine such as Apex to be swapped in if needed.
⦁ Chapter 10, The Future of Stream Processing, looks at the road ahead for Apex and stream processing in general. We are going to examine the role of machine learning, as well as the role of SQL and why it is important for streaming.

작가 소개

⦁ Thomas Weise
Thomas Weise is the Apache Apex PMC Chair and cofounder at Atrato. Earlier, he worked at a number of other technology companies in the San Francisco Bay Area, including DataTorrent, where he was a cofounder of the Apex project. Thomas is also a committer to Apache Beam and has contributed to several more of the ecosystem projects. He has been working on distributed systems for 20 years and has been a speaker at international big data conferences. Thomas received the degree of Diplom-Informatiker (MSc in computer science) from TU Dresden, Germany. He can be reached on Twitter at: @thweise.
⦁ Munagala V. Ramanath
Dr. Munagala V. Ramanath got his PhD in Computer Science from the University of Wisconsin, USA and an MSc in Mathematics from Carleton University, Ottawa, Canada. After that, he taught Computer Science courses as Assistant/Associate Professor at the University of Western Ontario in Canada for a few years, before transitioning to the corporate sphere. Since then, he has worked as a senior software engineer at a number of technology companies in California including SeeBeyond, EMC, Sun Microsystems, DataTorrent, and Cloudera. He has published papers in peer reviewed journals in several areas including code optimization, graph theory, and image processing.
⦁ David Yan
David Yan is based in the Silicon Valley, California. He is a senior software engineer at Google. Prior to Google, he worked at DataTorrent, Yahoo!, and the Jet Propulsion Laboratory. David holds a master of science in Computer Science from Stanford University and a bachelor of science in Electrical Engineering and Computer Science from the University of California at Berkeley
⦁ Kenneth Knowles
Kenneth Knowles is a founding PMC member of Apache Beam. Kenn has been working on Google Cloud Dataflow-Google's Beam backend-since 2014. Prior to that, he built backends for startups such as Cityspan, Inkling, and Dimagi. Kenn holds a PhD in Programming Language Theory from the University of California, Santa Cruz.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 요즘 우아한 AI 개발 (우아한형제들)
  • 조코딩의 AI 비트코인 자동 매매 시스템 만들기 (조동근)
  • 개정2판 | 파인만의 컴퓨터 강의 (리처드 파인만, 서환수)
  • 멀티패러다임 프로그래밍 (유인동)
  • npm Deep Dive (전유정, 김용찬)
  • 모던 소프트웨어 엔지니어링 (데이비드 팔리, 박재호)
  • 기획자로 산다는 것 (카카)
  • 이것이 스프링 부트다 with 자바 (김희선)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 플랫폼 엔지니어링 (이언 놀런드, 카미유 푸르니에)
  • 개정판 | Do it! 점프 투 파이썬 (박응용)
  • 시스템 설계 면접 완벽 가이드 (지용 탄, 나정호)
  • 개정판 | [Must Have] 코드팩토리의 플러터 프로그래밍 (최지호)
  • 파이토치와 유니티 ML-Agents로 배우는 강화학습 [응용편] (민규식, 이현호)
  • 개정4판 | 스위프트 프로그래밍 (야곰)
  • 개정판 | 개발자 기술 면접 노트 (이남희)
  • 개정판 | 혼자 공부하는 머신러닝+딥러닝 (박해선)
  • 테스트 너머의 QA 엔지니어링 (김명관)
  • 혼자 공부하는 네트워크 (강민철)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전