본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Mastering Kibana 6.x 상세페이지

Mastering Kibana 6.x

Visualize your Elastic Stack data with histograms, maps, charts, and graphs

  • 관심 0
소장
전자책 정가
17,000원
판매가
17,000원
출간 정보
  • 2018.07.31 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 365 쪽
  • 17.6MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781788834032
ECN
-
Mastering Kibana 6.x

작품 정보

▶Book Description
Kibana is one of the popular tools among data enthusiasts for slicing and dicing large datasets and uncovering Business Intelligence (BI) with the help of its rich and powerful visualizations.

To begin with, Mastering Kibana 6.x quickly introduces you to the features of Kibana 6.x, before teaching you how to create smart dashboards in no time. You will explore metric analytics and graph exploration, followed by understanding how to quickly customize Kibana dashboards. In addition to this, you will learn advanced analytics such as maps, hits, and list analytics. All this will help you enhance your skills in running and comparing multiple queries and filters, influencing your data visualization skills at scale.

With Kibana’s Timelion feature, you can analyze time series data with histograms and stats analytics. By the end of this book, you will have created a speedy machine learning job using X-Pack capabilities.

▶What You Will Learn
⦁ Create unique dashboards with various intuitive data visualizations
⦁ Visualize Timelion expressions with added histograms and stats analytics
⦁ Integrate X-Pack with your Elastic Stack in simple steps
⦁ Extract data from Elasticsearch for advanced analysis and anomaly detection using dashboards
⦁ Build dashboards from web applications for application logs
⦁ Create monitoring and alerting dashboards using Beats

▶Key Features
⦁ Explore visualizations and perform histograms, stats, and map analytics
⦁ Unleash X-Pack and Timelion, and learn alerting, monitoring, and reporting features
⦁ Manage dashboards with Beats and create machine learning jobs for faster analytics

▶Who This Book Is For
Mastering Kibana 6.x is for you if you are a big data engineer, DevOps engineer, or data scientist aspiring to go beyond data visualization at scale and gain maximum insights from their large datasets. Basic knowledge of Elasticstack will be an added advantage, although not mandatory.

▶What this book covers
⦁ Chapter 1, Revising the ELK Stack, this chapter will explain details of ELK stack which is now known as Elastic Stack. Although they've all been built to work exceptionally well together, each one is a separate project that is driven by the open-source vendor Elastic. Through this chapter reader will get complete idea of these three software and will able to figure out that how we can combine these to achieve different use cases.

⦁ Chapter 2, Setting Up and Customizing the Kibana Dashboard, In this chapter we will know how to customize Kibana visualization by adding title, resizing panels, change colors and opacity, modify the legends etc. This will also explain how we can embed the dashboard on our existing application, By tweaking these features we can create more meaningful and impact full dashboards.

⦁ Chapter 3, Exploring Your Data, Here we will come to know the Discover tab functionalities like Search Bar, Time Filter, Field Selector, Data Histogram and Log View. Discover option provide us the way to search and select required fields from our dataset. It provides us the complete picture of Elastic search data which is loaded into Kibana.

⦁ Chapter 4, Visualizing the Data, The Kibana Visualize page is where we can create, modify, and view our own custom visualizations. There are different types of visualizations, ranging from Vertical bar and Pie charts to Tile maps and Data tables. Different type of visualization can be created using Kibana Visualize option. Visualizations can also be shared with other users who have access to the Kibana instance.In this chapter reader will learn to create various types of data visualizations like Vertical bar,Pie charts, Tile maps,Data tables and tag clouds etc.

⦁ Chapter 5, Dashboarding to Showcase Key Performance Indicators, With a dashboard, we can combine multiple visualizations onto a single page. Here we can filter them by providing a search query or by selecting filters by clicking elements in the visualization. Dashboards are useful when we want to get an overview of logs, and make correlations among various visualizations and logs. We can also export the csv data from data tables of Kibana.

⦁ Chapter 6, Handling Time Series Data with Timelion , In this chapter we will learn about Timelion which is a time series visualization plugin for Kibana which enables us to combine independent data sources within the same visualization. As with normal visualizations in Kibana, we can visualize Timelion expressions from the Visualize tab. It provides us various features such as function chaining, analyzing trends, data formatting, and performing basic calculations.

⦁ Chapter 7, Interact with Your Data Using Dev Tools , in this chapter we will learn about Dev Tools which contains development tools that we can use to interact with data in Kibana. Console plugin of Kibana Dev Tools provides a UI to interact with the REST API of Elasticsearch. Console has two main areas: the editor, where we can compose requests to Elasticsearch, and the response pane, which displays the responses to the request.

⦁ Chapter 8, Tweaking Your Configuration with Kibana Management, in this chapter we will cover Kibana Management interface is used to perform runtime configuration of Kibana, initial setup and ongoing configuration of index patterns, advanced settings that tweak the behaviors of Kibana itself, and various "objects" that we can save throughout Kibana such as searches, visualizations, and dashboards.

⦁ Chapter 9, Understanding X-Pack Features , in this chapter we will come to know how to setup X-Pack and use different features like security, alerting, monitoring, reporting and machine learning. In default setup of ELK we do not have these features and for using XPack we need to purchase the license. X-Pack provide us the feature to secure the ELK stack will user role and permission.

⦁ Chapter 10, Machine Learning with Kibana , in this chapter we will learn about Machine learning which is the science of getting computers to act without being explicitly programmed. For applying machine learning on our dataset we need to use any programming language like R or Python but Kibana provides us a tab with X-Pack for creating machine learning jobs and managing them. We can apply machine learning in any time based dataset and can get the output in Kibana UI. We can detect anomalies, find root cause of any problem, easily forecast the future trends and find many answers from our data using machine learning.

⦁ Chapter 11, Create Super Cool Dashboard from a Web Application , in this chapter we will cover how we can create a super cool dashboard from an existing web application through practical example. Here I will drive through application data flow from database to Kibana and then from Kibana visualization to Dashboard. The dashboard can independently be used or we can embed it in our web application.

⦁ Chapter 12, Different Use Cases of Kibana, in this chapter we will cover different important use cases of Kibana like handling time series data where we will cover conditional formatting and tracking trends etc. After that we will cover how to work with visual builder to handle the time series data and then will cover GeoIP for Elastic Search and how we can plot data on maps.

⦁ Chapter 13, Create Monitoring Dashboard Using Beats, in this chapter we will learn about Beats which works as a data shippers. This chapter will explain to create a quick monitoring dashboard using Beats. We will come to know about different type of beats like Metricbeat, Packetbeat, Filebeat, and so on. Here I will cover each steps from Beats configuration to dashboard creation.In this chapter reader would be able to create quick monitoring dashboard using Beats.

⦁ Chapter 14, Best Practices, in this chapter we will cover different best practices which we need to ensure while working with Elastic Stack. By following these best practices we can get optimum performance from our Elastic stack setup.

작가 소개

⦁ Anurag Srivastava
Anurag Srivastava is a senior technical lead since 11 years in a multinational software company in web-based application development. He has led and handled teams and clients since 7 years of his professional career. Proficient in designing and deployment of scalable applications, he has multiple certifications in ML and data science using Python. He is well experienced with the Elastic stack (Elasticsearch, Logstash, and Kibana) for creating dashboards using system metrics data, log data, application data, or relational databases.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 나만의 MCP 서버 만들기 with 커서 AI (서지영)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 개정2판 | 인프라 엔지니어의 교과서 (사노 유타카, 김성훈)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 조코딩의 랭체인으로 AI 에이전트 서비스 만들기 (우성우, 조동근)
  • 개정2판 | 시작하세요! 도커/쿠버네티스 (용찬호)
  • 코드 너머, 회사보다 오래 남을 개발자 (김상기, 배문교)
  • 개발자를 위한 IT 영어 온보딩 가이드 (장진호)
  • 개정2판 | 파인만의 컴퓨터 강의 (리처드 파인만, 서환수)
  • 조코딩의 AI 비트코인 자동 매매 시스템 만들기 (조동근)
  • 타입스크립트, 리액트, Next.js로 배우는 실전 웹 애플리케이션 개발 (테지마 타쿠야, 요시다 타케토)
  • 혼자 공부하는 데이터 분석 with 파이썬 (박해선)
  • 그림으로 이해하는 알고리즘 (이시다 모리테루, 미야자키 쇼이치)
  • 생성형 AI 인 액션 (아미트 바리, 이준)
  • 도커로 구축한 랩에서 혼자 실습하며 배우는 네트워크 프로토콜 입문 (미야타 히로시, 이민성)
  • 테디노트의 랭체인을 활용한 RAG 비법노트 심화편 (이경록)
  • 아키텍트 첫걸음 (요네쿠보 다케시, 조다롱)
  • 지속적 배포 (발렌티나 세르빌, 이일웅)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 개정판 | 개발자 기술 면접 노트 (이남희)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전