본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Modern Scala Projects 상세페이지

Modern Scala Projects

Leverage the power of Scala for building data-driven and high-performant projects

  • 관심 0
소장
전자책 정가
19,000원
판매가
19,000원
출간 정보
  • 2018.07.31 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 328 쪽
  • 16.8MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781788625272
ECN
-
Modern Scala Projects

작품 정보

▶Book Description
Scala, together with the Spark Framework, forms a rich and powerful data processing ecosystem. Modern Scala Projects is a journey into the depths of this ecosystem. The machine learning (ML) projects presented in this book enable you to create practical, robust data analytics solutions, with an emphasis on automating data workflows with the Spark ML pipeline API. This book showcases or carefully cherry-picks from Scala's functional libraries and other constructs to help readers roll out their own scalable data processing frameworks. The projects in this book enable data practitioners across all industries gain insights into data that will help organizations have strategic and competitive advantage.

Modern Scala Projects focuses on the application of supervisory learning ML techniques that classify data and make predictions. You'll begin with working on a project to predict a class of flower by implementing a simple machine learning model. Next, you'll create a cancer diagnosis classification pipeline, followed by projects delving into stock price prediction, spam filtering, fraud detection, and a recommendation engine.

By the end of this book, you will be able to build efficient data science projects that fulfil your software requirements.

▶What You Will Learn
⦁ Create pipelines to extract data or analytics and visualizations
⦁ Automate your process pipeline with jobs that are reproducible
⦁ Extract intelligent data efficiently from large, disparate datasets
⦁ Automate the extraction, transformation, and loading of data
⦁ Develop tools that collate, model, and analyze data
⦁ Maintain the integrity of data as data flows become more complex
⦁ Develop tools that predict outcomes based on “pattern discovery”
⦁ Build really fast and accurate machine-learning models in Scala

▶Key Features
⦁ Gain hands-on experience in building data science projects with Scala
⦁ Exploit powerful functionalities of machine learning libraries
⦁ Use machine learning algorithms and decision tree models for enterprise apps

▶Who This Book Is For
Modern Scala Projects is for Scala developers who would like to gain some hands-on experience with some interesting real-world projects. Prior programming experience with Scala is necessary.

▶What this book covers
⦁ Chapter 1, Predict the Class of a Flower from the Iris Dataset, focuses on building a machine learning model leveraging a time-tested statistical method based on regression. The chapter draws the reader into data processing, all the way to training and testing a relatively simple machine learning model.

⦁ Chapter 2, Build a Breast Cancer Prognosis Pipeline with the Power of Spark and Scala, taps into a publicly available breast cancer dataset. It evaluates various feature selection algorithms, transforms data, and builds a classification model.

⦁ Chapter 3, Stock Price Predictions, says that stock price prediction can be an impossible task. In this chapter, we take a new approach. Accordingly, we build and train a neural network model with training data to solve the apparently intractable problem of stock price prediction. A data pipeline, with Spark at its core, distributes training of the model across multiple machines in a cluster. A real-life dataset is fed into the pipeline. Training data goes through preprocessing and normalization steps before a model is trained to fit the data. We may also provide a means to visualize the results of our prediction and evaluate our model after training.

⦁ Chapter 4, Building a Spam Classification Pipeline, informs the reader that the overarching learning objective of this chapter is to implement a spam filtering data analysis pipeline. We will rely on the Spark ML library's machine learning APIs and its supporting libraries to build a spam classification pipeline.

⦁ Chapter 5, Build a Fraud Detection System, applies machine learning techniques and algorithms to build a practical ML pipeline that helps find questionable charges on consumers’ credit cards. The data is drawn from a publicly accessible Consumer Complaints Database. The chapter demonstrates the tools contained in Spark ML for building, evaluating, and tuning a pipeline. Feature extraction is one function served by Spark ML that is covered here.

⦁ Chapter 6, Build Flights Performance Prediction Model, makes us able to leverage flight departure and arrival data to predict for the user if their flight is delayed or canceled. Here, we will build a decisions trees-based model to derive useful predictors, such as what time of the day is best to have a seat on a flight, with a minimum chance of delay.

⦁ Chapter 7, Building a Recommendation Engine, draws the reader into the implementation of a scalable recommendations engine. The collaborative-filtering approach is laid out as the reader walks through a phased recommendations-generating process based on users’ past preferences.

작가 소개

⦁ Ilango Gurusamy
Ilango Gurusamy holds an MS degree in computer science from California State University. He has lead Java projects at Northrop Grumman, AT&T, and such. He moved into Scala and Functional Programming. His current interests are IoT, navigational applications, and all things Scala related. A strategic thinker, speaker, and writer, he also loves yoga, skydiving, cars, dogs, and fishing. You can know more about his achievements in his blog, titled scalanirvana. His LinkedIn user name is ilangogurusamy

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 나만의 MCP 서버 만들기 with 커서 AI (서지영)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 개정2판 | 인프라 엔지니어의 교과서 (사노 유타카, 김성훈)
  • 조코딩의 랭체인으로 AI 에이전트 서비스 만들기 (우성우, 조동근)
  • 지속적 배포 (발렌티나 세르빌, 이일웅)
  • 개정2판 | 시작하세요! 도커/쿠버네티스 (용찬호)
  • 개발자를 위한 IT 영어 온보딩 가이드 (장진호)
  • 개정2판 | 파인만의 컴퓨터 강의 (리처드 파인만, 서환수)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • Do it! LLM을 활용한 AI 에이전트 개발 입문 (이성용)
  • 조코딩의 AI 비트코인 자동 매매 시스템 만들기 (조동근)
  • 테디노트의 랭체인을 활용한 RAG 비법노트 심화편 (이경록)
  • 아키텍트 첫걸음 (요네쿠보 다케시, 조다롱)
  • 코드 너머, 회사보다 오래 남을 개발자 (김상기, 배문교)
  • 개정판 | 혼자 공부하는 머신러닝+딥러닝 (박해선)
  • Node js로 배우는 서버 사이드 개발 (강민정)
  • 최고의 프롬프트 엔지니어링 강의 (김진중)
  • 타입스크립트, 리액트, Next.js로 배우는 실전 웹 애플리케이션 개발 (테지마 타쿠야, 요시다 타케토)
  • 혼자 공부하는 데이터 분석 with 파이썬 (박해선)
  • 그림으로 이해하는 알고리즘 (이시다 모리테루, 미야자키 쇼이치)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전